在平面直角坐標(biāo)系x0y中,已知A(4,2),B(2,-2),以原點O為位似中心,按位似比1:2把△OAB縮小,則點A的對應(yīng)點A′的坐標(biāo)為( )
A.(3,1)
B.(-2,-1)
C.(3,1)或(-3,-1)
D.(2,1)或(-2,-1)
【答案】分析:在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k,結(jié)合題意即可得出答案.
解答:解:∵A(4,2),B(2,-2)兩點,以坐標(biāo)原點O為位似中心,相似比為,
∴對應(yīng)點A′的坐標(biāo)分別是:A′(2,1)或(-2,-1).
故選D.
點評:此題主要考查了位似變換的性質(zhì),根據(jù)各點到位似中心的距離比也等于相似比是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鼓樓區(qū)二模)已知反比例函數(shù)y1=
k
x
(x>0)的圖象經(jīng)過點A(2,4).
(1)求k的值,并在平面直角坐標(biāo)系中畫出y1=
k
x
(x>0)的圖象;
(2)方程x2+bx-k=0的根可看做y1=
k
x
的圖象與y2=x+b的圖象交點的橫坐標(biāo).
依此方法,若方程x2+bx-k=0的一個實根為m,且滿足2<m<3,則b的取值范圍為
-
1
3
<b<2
-
1
3
<b<2

(3)方程x3-x-1=0的實數(shù)根x0所在的范圍是n<x0<n+1,根據(jù)以上經(jīng)驗,可求出正整數(shù)n的值為
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•安慶一模)閱讀下列解題過程,并解答后面的問題:
如圖1,在平面直角坐標(biāo)系xOy中,A(x1,y1),B(x2,y2),C為線段AB的中點,求C點的坐標(biāo).
解:分布過A、C做x軸的平行線,過B、C做y軸的平行線,兩組平行線的交點如圖1所示.
設(shè)C(x0,y0),則D(x0,y1),E(x2,y1),F(xiàn)(x2,y0
由圖1可知:x0=
x2-x1
2
+x1
=
x1+x2
2

y0=
y2-y1
2
+x1
=
y1+y2
2

∴(
x1+x2
2
,
y1+y2
2

問題:(1)已知A(-1,4),B(3,-2),則線段AB的中點坐標(biāo)為
(1,1)
(1,1)

(2)平行四邊形ABCD中,點A、B、C的坐標(biāo)分別為(1,-4),(0,2),(5,6),求點D的坐標(biāo).
(3)如圖2,B(6,4)在函數(shù)y=
1
2
x+1的圖象上,A(5,2),C在x軸上,D在函數(shù)y=
1
2
x+1的圖象上,以A、B、C、D四個點為頂點構(gòu)成平行四邊形,直接寫出所有滿足條件的D點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宿遷)在平面直角坐標(biāo)系xOy中,一次函數(shù)y=
1
3
x+2
與反比例函數(shù)y=
5
x
(x>0)
的圖象交點的橫坐標(biāo)為x0.若k<x0<k+1,則整數(shù)k的值是
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,在x軸上代表初始值x0的那個點沿著豎線走,直到和曲線y=
4
x
(x>0)交于點P后,在交點P處沿著東南方向(南偏東45°)走,一直和x軸相交,這個交點稱投影點T.當(dāng)x0=1時,有P(1,4),相應(yīng)的投影點T的坐標(biāo)是(5,0);當(dāng)x0=2時,有P(2,2),相應(yīng)的投影點T的坐標(biāo)是(4,0);若投影點T的坐標(biāo)是(19
4
19
,0)時,初始值x0=
19
19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,任意點P(x0,y0)經(jīng)平移后對應(yīng)點為P0(x0+5,y0+3).將△ABC作同樣的平移后得到△A1B1C1
(1)在平面直角坐標(biāo)系中畫出△A1B1C1
(2)寫出點的坐標(biāo):A1
3
3
,
6
6
)B1
1
1
,
2
2
)C1
7
7
,
3
3
).
(3)計算△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案