【題目】如圖1所示,邊長(zhǎng)為a的正方形中有一個(gè)邊長(zhǎng)為b的小正方形,如圖2所示是由圖1中陰影部分拼成的一個(gè)正方形.
(1)設(shè)圖1中陰影部分面積為S1,圖2中陰影部分面積為S2.請(qǐng)直接用含a,b的代數(shù)式表示S1,S2;
(2)請(qǐng)寫出上述過程所揭示的乘法公式;
(3)試?yán)眠@個(gè)公式計(jì)算:(2+1)(22+1)(24+1)(28+1)+1.
【答案】(1)S1=a2-b2,S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)216.
【解析】試題分析:(1)根據(jù)兩個(gè)圖形的面積相等,即可寫出公式;
(2)根據(jù)面積相等可得(a+b)(a-b)=a2-b2;
(3)從左到右依次利用平方差公式即可求解.
試題解析:
(1)S1=a2-b2,S2=(a+b)(a﹣b);
(2)(a+b)(a﹣b)=a2﹣b2;
(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1
=(22﹣1)(22+1)(24+1)(28+1)+1
=(24﹣1)(24+1)(28+1)+1
=(28﹣1)(28+1)+1
=(216﹣1)+1
=216.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下表: 我們把某格中字母和所得到的多項(xiàng)式稱為特征多項(xiàng)式,例如第1格的“特征多項(xiàng)式”為4x+y,回答下列問題:
序號(hào) | 1 | 2 | 3 | … |
圖形 | x x | x x x | x x x x | … |
(1)第3格的“特征多項(xiàng)式”為 , 第4格的“特征多項(xiàng)式”為 , 第n格的“特征多項(xiàng)式”為;
(2)若第1格的“特征多項(xiàng)式”的值為﹣10,第2格的“特征多項(xiàng)式”的值為﹣16. ①求x,y的值;
②在①的條件下,第n格的“特征多項(xiàng)式”是否有最小值?若有,求出最小值和相應(yīng)的n值;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線相交于點(diǎn)O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面積為10 ,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
調(diào)查結(jié)果統(tǒng)計(jì)表
調(diào)查結(jié)果頻數(shù)分布直方圖 調(diào)查結(jié)果扇形統(tǒng)計(jì)圖
請(qǐng)根據(jù)以上圖表,解答下列問題:
(1)填空:這次調(diào)查的樣本容量是 , , ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)求扇形統(tǒng)計(jì)圖中扇形的圓心角度數(shù);
(4)該校共有人,請(qǐng)估計(jì)每月零花錢的數(shù)額在范圍的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初中學(xué)生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者極為關(guān)注的一個(gè)問題.為此市教育局對(duì)本市部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):喜歡;B級(jí):不太喜歡;C級(jí):不喜歡),并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市近80000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,AB=AD, 將△ABD沿BD翻折,使點(diǎn)A翻折到點(diǎn)C. E是BD上一點(diǎn),且BE>DE,連結(jié)CE并延長(zhǎng)交AD于F,連結(jié)AE.
(1)依題意補(bǔ)全圖形;
(2)判斷∠DFC與∠BAE的大小關(guān)系并加以證明;
(3)若∠BAD=120°,AB=2,取AD的中點(diǎn)G,連結(jié)EG,求EA+EG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD為平行四邊形,AE⊥BD于E,CF⊥BD于F.
(1)求證:BE=DF;
(2)若M、N分別為邊AD、BC上的點(diǎn),且DM=BN,試猜想四邊形MENF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知梯形ABCD中,AD∥BC,AB=AD(如圖所示).
(1)在下圖中,用尺規(guī)作∠BAD的平分線AE交BC于點(diǎn)E,連接DE(保留作圖痕跡,不寫作法),并證明四邊形ABED是菱形;
(2)若∠ABC=60°,EC=2BE.求證:ED⊥DC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com