今年5月1日起實(shí)施《青海省保障性住房準(zhǔn)入分配退出和運(yùn)營(yíng)管理實(shí)施細(xì)則》規(guī)定:公共租賃住房和廉租住房并軌運(yùn)行(以下簡(jiǎn)稱并軌房),計(jì)劃10年內(nèi)解決低收入人群住房問(wèn)題.已知第x年(x為正整數(shù))投入使用的并軌房面積為y百萬(wàn)平方米,且y與x的函數(shù)關(guān)系式為y=-x+5.由于物價(jià)上漲等因素的影響,每年單位面積租金也隨之上調(diào).假設(shè)每年的并軌房全部出租完,預(yù)計(jì)第x年投入使用的并軌房的單位面積租金z與時(shí)間x滿足一次函數(shù)關(guān)系如下表:

時(shí)間x(單位:年,x為正整數(shù))
 
1
 
2
 
3
 
4
 
5
 

 
單位面積租金z(單位:元/平方米)
 
50
 
52
 
54
 
56
 
58
 
 
 
 
(1)求出z與x的函數(shù)關(guān)系式;
(2)設(shè)第x年政府投入使用的并軌房收取的租金為W百萬(wàn)元,請(qǐng)問(wèn)政府在第幾年投入使用的并軌房收取的租金最多,最多為多少百萬(wàn)元?

(1)z與x的函數(shù)關(guān)系式為z=2x+48;
(2)政府在第3年投入使用的并軌房收取的租金最多,最多為243百萬(wàn)元.

解析試題分析:(1)設(shè)z與x的一次函數(shù)關(guān)系為z=kx+b(k≠0),然后任取兩組數(shù)據(jù),利用待定系數(shù)法求一次函數(shù)解析式解答即可;
(2)根據(jù)租金=單位面積租金×面積列式整理得到W與x的關(guān)系式,再整理成頂點(diǎn)式形式,然后根據(jù)二次函數(shù)的最值問(wèn)題解答.
試題解析:(1)設(shè)z與x的一次函數(shù)關(guān)系為z=kx+b(k≠0),
∵x=1時(shí),z=50,x=2時(shí),z=52,
,
解得,
∴z與x的函數(shù)關(guān)系式為z=2x+48;
(2)由題意得,W=yz=(﹣x+5)(2x+48),
=﹣x2+2x+240,
=﹣(x2﹣6x+9)+3+240,
=﹣(x﹣3)2+243,
∵﹣<0,
∴當(dāng)x=3時(shí),W有最大值為243,
答:政府在第3年投入使用的并軌房收取的租金最多,最多為243百萬(wàn)元.
考點(diǎn):二次函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

2013年5月26日,中國(guó)羽毛球隊(duì)蟬聯(lián)蘇迪曼杯團(tuán)體賽冠軍,成就了首個(gè)五連冠霸業(yè).比賽中羽毛球的某次運(yùn)動(dòng)路線可以看作是一條拋物線(如圖).若不考慮外力因素,羽毛球行進(jìn)高度y(米)與水平距離x(米)之間滿足關(guān)系,則羽毛球飛出的水平距離為     米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角坐標(biāo)平面內(nèi),直線軸和軸分別交于A、B兩點(diǎn),二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、B,且頂點(diǎn)為C.

(1)求這個(gè)二次函數(shù)的解析式;
(2)求的值;
(3)若P是這個(gè)二次函數(shù)圖象上位于軸下方的一點(diǎn),且ABP的面積為10,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線:y=ax2+bx+4與x軸交于點(diǎn)A(-2,0)和B(4,0)、與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)T是拋物線對(duì)稱軸上的一點(diǎn),且△ACT是以AC為底的等腰三角形,求點(diǎn)T的坐標(biāo);
(3)點(diǎn)M、Q分別從點(diǎn)A、B以每秒1個(gè)單位長(zhǎng)度的速度沿x軸同時(shí)出發(fā)相向而行.當(dāng)點(diǎn)M原點(diǎn)時(shí),點(diǎn)Q立刻掉頭并以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)B方向移動(dòng),當(dāng)點(diǎn)M到達(dá)拋物線的對(duì)稱軸時(shí),兩點(diǎn)停止運(yùn)動(dòng).過(guò)點(diǎn)M的直線l⊥軸,交AC或BC于點(diǎn)P.求點(diǎn)M的運(yùn)動(dòng)時(shí)間t(秒)與△APQ的面積S的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

為深化“攜手節(jié)能低碳,共建碧水藍(lán)天”活動(dòng),發(fā)展“低碳經(jīng)濟(jì)”,某單位進(jìn)行技術(shù)革新,讓可再生資源重新利用.今年1月份,再生資源處理量為40噸,從今年1月1日起,該單位每月再生資源處理量每一個(gè)月將提高10噸.月處理成本(元)與月份之間的關(guān)系可近似地表示為:,每處理一噸再生資源得到的新產(chǎn)品的售價(jià)定為100元.若該單位每月再生資源處理量為y(噸),每月的利潤(rùn)為w(元).
(1)分別求出y與x,w與x的函數(shù)關(guān)系式;
(2)在今年內(nèi)該單位哪個(gè)月獲得利潤(rùn)達(dá)到5800元?
(3)隨著人們環(huán)保意識(shí)的增加,該單位需求的可再生資源數(shù)量受限.今年三月的再生資源處理量比二月份減少了m%,該新產(chǎn)品的產(chǎn)量也隨之減少,其售價(jià)比二月份的售價(jià)增加了%.四月份,該單位得到國(guó)家科委的技術(shù)支持,使月處理成本比二月份的降低了%.如果該單位四月份在保持三月份的再生資源處理量和新產(chǎn)品售價(jià)的基礎(chǔ)上,其利潤(rùn)比二月份的利潤(rùn)減少了60元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖①,已知等腰梯形ABCD的周長(zhǎng)為48,面積為S,AB∥CD,∠ADC=60°,設(shè)AB=3x.
(1)用x表示AD和CD;
(2)用x表示S,并求S的最大值;
(3)如圖②,當(dāng)S取最大值時(shí),等腰梯形ABCD的四個(gè)頂點(diǎn)都在⊙O上,點(diǎn)E和點(diǎn)F分別是AB和CD的中點(diǎn),求⊙O的半徑R的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B,C重合).
第一次操作:將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;
第二次操作:將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí),記為點(diǎn)H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過(guò)兩次操作后得到的,其形狀為   ,求此時(shí)線段EF的長(zhǎng);
(2)若經(jīng)過(guò)三次操作可得到四邊形EFGH.
①請(qǐng)判斷四邊形EFGH的形狀為   ,此時(shí)AE與BF的數(shù)量關(guān)系是   ;
②以①中的結(jié)論為前提,設(shè)AE的長(zhǎng)為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過(guò)多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請(qǐng)直接寫出其邊長(zhǎng);如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線與x軸,y軸分別相交于點(diǎn)B,點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的拋物線與x軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對(duì)稱軸是直線
(1)求A點(diǎn)的坐標(biāo)及該拋物線的函數(shù)表達(dá)式;
(2)求出∆PBC的面積;
(3)請(qǐng)問(wèn)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)Q,使得以點(diǎn)A、B、C、Q所圍成的四邊形面積是∆PBC的面積的?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線AB:與拋物線交于A、B兩點(diǎn),
(1)直線AB總經(jīng)過(guò)一個(gè)定點(diǎn)C,請(qǐng)直接寫出點(diǎn)C坐標(biāo);
(2)當(dāng)時(shí),在直線AB下方的拋物線上求點(diǎn)P,使△ABP的面積等于5;
(3)若在拋物線上存在定點(diǎn)D使∠ADB=90°,求點(diǎn)D到直線AB的最大距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案