【題目】已知一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2=的圖象相交于A、B兩點,坐標分別為(—2,4)、(4—2).

1)求兩個函數(shù)的解析式;

2)求△AOB的面積;

3)直線AB上是否存在一點PA除外),使△ABO與以B﹑P、O為頂點的三角形相似?若存在,直接寫出頂點P的坐標.

【答案】1y=-x+2 ,y=;(2AOB的面積為6;(3)().

【解析】

1)將點(-2,4)、(4,-2)代入y1=ax+b,得,解得:,

y=-x+2 ,

將點(-24)代入y2=,得k=-8,

y=

2)在y=-x+2中,當y0時,x2,

所以一次函數(shù)與x軸交點是(20),

AOB的面積為=

3)∵OAOB,

OAB是等腰三角形,

ABOBPO相似,

BPO也是等腰三角形,

故只有一種情況,即POB的垂直平分線上,

Px,-x+2

,

解得:,

∴頂點P的坐標為(,.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲、乙只捕撈船同時從A港出海捕魚,甲船以每小時15 km的速度沿北偏西60°方向前進,乙船以每小時15 km的速度沿東北方向前進.甲船航行2 h到達C處,此時甲船發(fā)現(xiàn)漁具丟在了乙船上,于是甲船快速(勻速)沿北偏東75°的方向追趕乙船,結果兩船在B處相遇.問:

(1)甲船從C處出發(fā)追趕上乙船用了多少時間?

(2)甲船追趕乙船的速度是每小時多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線l1,l2,l3l4是同一平面內的一組平行線.

1)如圖1,正方形ABCD4個頂點都在這些平行線上,若四條直線中相鄰兩條之間的距離都是1,其中點A,點C分別在直線l1l4上,求正方形的面積.

2)如圖2,正方形ABCD4個頂點分別在四條平行線上,若四條直線中相鄰兩條之間的距離依次為h1,h2,h3

①求證:h1h3

②設正方形ABCD的面積為S,求證:S2h12+2h1h2+h22

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖像經(jīng)過的三個頂點,其中,

1)求點的坐標;

2)在第三象限存在點,使以為頂點的四邊形是平行四邊形,求滿足條件的點的坐標;

3)在(2)的條件下,能否將拋物線平移后經(jīng)過兩點,若能求出平移后經(jīng)過兩點的拋物線的表達式,并寫出平移過程.若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形 ABCD 中,AD / /BC ,AD CD M 為腰 AB 上一動點,聯(lián)結 MC MD , AD 10, BC 15 , cot B 求:

(1)線段CD 的長.

(2)設線段 BM 的長為 x ,△CDM的面積為 y ,求 y 關于 x 的函數(shù)解析式,并寫出它的定義域.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關注和重點發(fā)展的新興產(chǎn)業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F(xiàn),CD垂直于地面,于點E.兩個底座地基高度相同即點D,F(xiàn)到地面的垂直距離相同,均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm結果保留根號

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DAB中點,過點DDF//BCAC于點E,且DE=EF,連接AF,CF,CD

1)求證:四邊形ADCF為平行四邊形;

2)若∠ACD=45°,∠EDC=30°,BC=4,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC三個頂點都在格點上,點A,BC的坐標分別為A(﹣2,3),B(﹣3,1),C01)請解答下列問題:

1ABCA1B1C1關于原點O成中心對稱,畫出A1B1C1并直接寫出點A的對應點A1的坐標;

2)畫出ABC繞點C順時針旋轉90°后得到的A2B2C,并求出線段AC旋轉時掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報名到農(nóng)村中學支教.

(1)若從甲、乙兩校報名的教師中分別隨機選1名,則所選的2名教師性別相同的概率是

(2)若從報名的4名教師中隨機選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學校的概率.

查看答案和解析>>

同步練習冊答案