【題目】一個(gè)正數(shù)x的兩個(gè)平方根分別是2a﹣1與﹣a+2,求a的值和這個(gè)正數(shù)x的值.

【答案】9

【解析】試題分析:

由“一個(gè)正數(shù)的兩個(gè)平方根互為相反數(shù)”可列出關(guān)于“a”的方程,解方程求得“a”的值,然后再求“x”的值;

試題解析:

解:∵正數(shù)x有兩個(gè)平方根,分別是﹣a+2與2a﹣1,

∴﹣a+2+2a﹣1=0

解得a=﹣1.

所以x=(﹣a+2)2=(1+2)2=9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,是假命題的是( )

A. 同旁?xún)?nèi)角互補(bǔ) B. 對(duì)頂角相等

C. 直角的補(bǔ)角仍然是直角 D. 兩點(diǎn)之間線(xiàn)段最短

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ACB=90°,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB交于點(diǎn)D,則AD的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多邊形的每一個(gè)外角都等于30°,則這個(gè)多邊形的邊數(shù)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高飲水質(zhì)量,越來(lái)越多的居民開(kāi)始選購(gòu)家用凈水器.一商場(chǎng)抓住商機(jī),從廠(chǎng)家購(gòu)進(jìn)了A、B兩種凈水器共160臺(tái),A型家用凈水器的進(jìn)價(jià)是每臺(tái)150元,B型凈水器的進(jìn)價(jià)是每臺(tái)350元,購(gòu)進(jìn)兩種凈水器共用去了36000元。

(1)求A、B兩種凈水器各購(gòu)進(jìn)了多少臺(tái)?

(2)為使每臺(tái)B型凈水器的毛利潤(rùn)是A型凈水器的2倍,且保證售完這160臺(tái)凈水器的毛利潤(rùn)不低于11000元,求每臺(tái)A型凈水器的售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義新運(yùn)算:對(duì)于任意實(shí)數(shù)a,b,都有ab=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運(yùn)算.比如:25=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5

(1)求3(﹣2)的值;

(2)若3x的值小于16,求x的取值范圍,并在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(14分)探究與發(fā)現(xiàn):如圖①,在RtABC中,∠BAC=90°,AB=AC,點(diǎn)D在底邊BC上,AE=AD,連結(jié)DE.

(1)當(dāng)∠BAD=60°時(shí),求∠CDE的度數(shù);

(2)當(dāng)點(diǎn)DBC (點(diǎn)B、C除外) 上運(yùn)動(dòng)時(shí),試猜想并探究∠BAD與∠CDE的數(shù)量關(guān)系;

(3)深入探究:若∠BAC≠90°,試就圖②探究∠BAD與∠CDE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓的面積公式為sr2,其中變量是(  )

A. s B. π C. r D. sr

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若3x=4,9y=7,則3x+2y的值為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案