【題目】如圖1,在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C、D均在格點上.點E為直線CD上的動點,連接BE,作AF⊥BE于F.點P為BC邊上的動點,連接DP和PF.
(Ⅰ)當(dāng)點E為CD邊的中點時,△ABF的面積為 ;
(Ⅱ)當(dāng)DP+PF最短時,請在圖2所示的網(wǎng)格中,用無刻度的直尺畫出點P,并簡要說明點P的位置是如何找到的(不要求證明) .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進(jìn)A、B兩種新型節(jié)能臺燈,已知B型節(jié)能臺燈每盞進(jìn)價比A型的多40元,且用3000元購進(jìn)的A型節(jié)能臺燈與用5000元購進(jìn)的B型節(jié)能臺燈的數(shù)量相同.
(1)求每盞A型節(jié)能臺燈的進(jìn)價是多少元?
(2)商場將購進(jìn)A、B兩型節(jié)能臺燈100盞進(jìn)行銷售,A型節(jié)能臺燈每盞的售價為90元,B型節(jié)能臺燈每盞的售價為140元,且B型節(jié)能臺燈的進(jìn)貨數(shù)量不超過A型節(jié)能臺燈數(shù)量的2倍.應(yīng)怎樣進(jìn)貨才能使商場在銷售完這批臺燈時利最多?此時利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線x=1是二次函數(shù)y=ax2+bx+c(a,b,c是實數(shù),且a≠0)的圖象的對稱軸,點A(x1,y1)和點B(x2,y2)為其圖象上的兩點,且y1<y2,( 。
A.若x1<x2,則x1+x2﹣2<0B.若x1<x2,則x1+x2﹣2>0
C.若x1>x2,則a(x1+x2-2)>0D.若x1>x2,則a(x1+x2-2)<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D為BC的中點,點E在AB上,AD,CE交于點F,AE=EF=4,FC=9,則cos∠ACB的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx-3(a≠0)經(jīng)過點(-2,-3).
(1)用a表示b.
(2)當(dāng)x≥-2時,y≤-2,求拋物線的解析式.
(3)無論a取何值,若一次函數(shù)y2=a2x+m總經(jīng)過y的頂點,求證:m≥.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,兩個形狀、大小完全相同的三角板OBC,DEF,按如圖所示的位置擺放,O為原點,點B(12,0) ,點B與點D重合,邊OB與邊DE都在x軸上.其中,∠C=∠DEF=90°,∠OBC=∠F=30°.
(1)如圖①,求點C坐標(biāo);
(2)現(xiàn)固定三角板DEF,將三角板OBC沿x軸正方向平移,得到△O′B′C′ ,當(dāng)點O′ 落點D上時停止運動.設(shè)三角板平移的距離為x,兩個三角板重疊部分的面積為y.求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)在(2)條件下,設(shè)邊BC的中點為點M,邊DF的中點為點N.直接寫出在三角板平移過程中,當(dāng)點M與點N之間的距離最小時,點M的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品每天的銷售利潤y(元)與銷售單價x(元)之間滿足關(guān)系:y=ax2+bx-75.其圖象如圖所示.
⑴a= ;b= ;
⑵銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?
⑶由圖象可知,銷售單價x在 時,該種商品每天的銷售利潤不低于16元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月23日是世界讀書日,設(shè)立的目的是推動更多的人去閱讀和寫作.為了解學(xué)生的課外閱讀情況,對某校八年級1班“你最喜愛的課外閱讀書目”進(jìn)行調(diào)查(每名學(xué)生必須選一類且只能選一類閱讀書目),并根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅統(tǒng)計圖(不完整).
根據(jù)以上信息解決下列問題
(1)所抽查的學(xué)生中,選史學(xué)類的男生有______人,選哲學(xué)類的女生有______人;
(2)扇形統(tǒng)計圖中“科學(xué)類”所對應(yīng)扇形圓心角度數(shù)為_______°;
(3)若該校有2000名學(xué)生,請估計該校喜愛“科學(xué)類”的學(xué)生共有多少人?
(4)從所抽取的選“哲學(xué)類”的學(xué)生中,隨機(jī)選取兩名學(xué)生參加區(qū)級辯論賽,請用樹狀圖或列表法求出所選取的兩名學(xué)生恰好選中一個男生、一個女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,點、分別是、上的點,且,連接、交于點.
(1)如圖①,判斷和之間的數(shù)量關(guān)系和位置關(guān)系,并證明;
(2)如圖②,連接,點是中點,若,,求線段的長度;
(3)如圖③,作于點,若,求證:點是中點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com