【題目】如圖,在菱形ABCD中,EAB邊上一點,且∠A=EDF=60°,有下列結論:①AE=BF;DEF是等邊三角形;③BEF是等腰三角形;④∠ADE=BEF,其中結論正確的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】試題解析:如圖,

連接BD,

∵四邊形ABCD是菱形,
AD=AB, ABCD,
∵∠A=60°,
∴∠ADC=120°,ADB=60°
同理:∠DBF=60°,
即∠A=DBF,
∴△ABD是等邊三角形,
AD=BD,
∵∠ADE+BDE=60°BDE+BDF=EDF=60°,
∴∠ADE=BDF
∵在△ADE和△BDF中, ,
∴△ADE≌△BDFASA),
DE=DF,AE=BF,故①正確;
∵∠EDF=60°,
∴△EDF是等邊三角形,
∴②正確;
∴∠DEF=60°,
∴∠AED+BEF=120°
∵∠AED+ADE=180°-A=120°,
∴∠ADE=BEF;
故④正確.
∵△ADE≌△BDF,
AE=BF,
同理:BE=CF,
BE不一定等于BF
故③錯誤.
綜上所述,結論正確的個數(shù)為3.故本題應選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了綠化校園,計劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查,榕樹的單價比香樟樹少20,購買3棵榕樹和2棵香樟樹共需340.

(1)榕樹和香樟樹的單價各是多少?

(2)根據(jù)學校實際情況,需購買兩種樹苗共150,總費用不超過10840,且購買香樟樹的棵數(shù)不少于榕樹的1.5,請你算算該校本次購買榕樹和香樟樹共有哪幾種方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,點EBC邊上一點,連接AE,把B沿AE折疊,使點B落在點B處,當CEB為直角三角形時,BE的長為      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,反比例函數(shù)y= 與正比例函數(shù)y=bx在同一坐標系內(nèi)的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組 .請結合題意填空,完成本題的解答.
(1)解不等式①,得:
(2)解不等式②,得:;
(3)把不等式①和②的解集在數(shù)軸上表示出來;
(4)不等式組的解集為:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

已知:如圖1,直線ABCD,點EAB、CD之間的一點,連接BE、DE得到∠BED

求證:∠BED =B+D.

1

小冰是這樣做的:

證明:過點EEFAB,則有∠BEF=B

ABCDEFCD

∴∠FED=D

∴∠BEF +FED =B+D

即∠BED=B+D

請利用材料中的結論,完成下面的問題:

已知:直線 ABCD,直線MN分別與AB、CD交于點E、F

(1)如圖2,BEF和∠EFD的平分線交于點G猜想∠G的度數(shù),并證明你的猜想;

(2)如圖3,EG1EG2為∠BEF內(nèi)滿足∠1=2的兩條線,分別與∠EFD的平分線交于點G1G2求證:∠FG1 E+G2=180°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A,B兩地同時相向勻速行駛,當乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,而甲車到達B地后立即掉頭,并保持原速與乙車同向行駛,經(jīng)過15小時后兩車同時到達距A300千米的C地(中途休息時間忽略不計).設兩車行駛的時間為x(小時),兩車之間的距離為y(千米),yx之間的函數(shù)關系如圖所示,則當甲車到達B地時,乙車距A_____千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由邊長相同的小正方形組成的網(wǎng)格,A,B,P,Q四點均在正方形網(wǎng)格的格點上,線段AB,PQ相交于點M,則圖中∠QMB的正切值是( )

A.
B.1
C.
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1 , l2 , 過點(1,0)作x軸的垂線交l2于點A1 , 過點A1作y軸的垂線交l2于點A2 , 過點A2作x軸的垂線交l2于點A3 , 過點A3作y軸的垂線交l2于點A4 , …依次進行下去,則點A2017的坐標為

查看答案和解析>>

同步練習冊答案