如圖所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分別為邊AB、BC、CD、DA的中點(diǎn),求證:四邊形EFGH為菱形.
連接AC、BD,根據(jù)等腰梯形的對(duì)角線相等可得AC=BD,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出EF=GH=AC,HE=FG=BD,從而得到EF=FG=GH=HE,再根據(jù)四條邊都相等的四邊形是菱形判定即可。
解析分析:連接AC、BD,根據(jù)等腰梯形的對(duì)角線相等可得AC=BD,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出EF=GH=AC,HE=FG=BD,從而得到EF=FG=GH=HE,再根據(jù)四條邊都相等的四邊形是菱形判定即可。
證明:如圖,連接AC、BD,
∵AD∥BC,AB=CD,∴AC=BD。
∵E、F、G、H分別為邊AB、BC、CD、DA的中點(diǎn),
∴在△ABC中,EF=AC;在△ADC中,GH=AC,
∴EF=GH=AC。
同理可得,HE=FG=BD!郋F=FG=GH=HE。
∴四邊形EFGH為菱形,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:北師大版(新課標(biāo)) 九年級(jí)(上) 題型:
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015屆初中數(shù)學(xué)蘇教版八年級(jí)上冊(cè)第一章練習(xí)卷(解析版) 題型:選擇題
如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),作射線AD,在線段AD及其延長(zhǎng)線上分別取點(diǎn)E,F,連結(jié)CE,BF.添加一個(gè)條件,使得△BDF≌△CDE,你添加的條件是 (不添加輔助線).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,一個(gè)平行四邊形的活動(dòng)框架,對(duì)角線是兩根橡皮筋.若改變框架的形狀,則∠α也隨之變化,兩條對(duì)角線長(zhǎng)度也在發(fā)生改變.當(dāng)∠α為 度時(shí),兩條對(duì)角線長(zhǎng)度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,將長(zhǎng)方形ABCD沿直線BD折疊,使C點(diǎn)落在C′處,BC′交AD于E.
(1)求證:BE=DE;
(2)若AD=8,AB=4,求△BED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com