如圖,Rt△ABC中,∠ACB=90°,CD⊥AB,D為垂足,若AD=2,BD=4,則AC=________,cosA=________.

    
分析:由于∠ACB=90°,CD⊥AB,那么有△ACD∽△ABC,于是AC:AD=AB:AC,而AD=2,BD=4,從而可求AC,再利用余弦的定義可求cosA.
解答:∵∠ACB=90°,CD⊥AB,
∴△ACD∽△ABC,
∴AC:AD=AB:AC,
又∵AD=2,BD=4,
∴AC2=2(2+4)=12,
∴AC=2,
∴cosA===
故答案是2
點評:本題考查了相似三角形的判定和性質(zhì)、余弦的計算.在直角三角形中,斜邊上的高所分成兩個三角形與原三角形相似.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個三角形,且要求其中一個三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點邊上一點,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(2)求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長.

查看答案和解析>>

同步練習冊答案