【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:3+2=(1+2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把部分a+b的式子化為平方式的方法。
請(qǐng)我仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n2,用含m、n的式子分別表示a、b,得a=________, b=___________.

(2)若a+4=(m+n2,且a、m、n均為正整數(shù),求a的值。

【答案】(1)a=m2+3n2,b=2mn;(2)13.

【解析】試題分析:1)根據(jù)完全平方公式運(yùn)算法則,即可得出a、b的表達(dá)式;(2)根據(jù)題意,4=2mn,首先確定m、n的值,通過分析m=2,n=1或者m=1n=2,然后即可確定好a的值.

試題解析:(1)a+b=(m+n)2

a+b=m2+3n2+2mn,

a=m2+3n2b=2mn.

a=m2+3n2,b=2mn;

2)由題意,得

4=2mn,且m、n為正整數(shù),

m=2,n=1m=1,n=2

a=22+3×12=7a=12+3×22=13

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(0,1),且過點(diǎn)(﹣1, ),直線y=kx+2與y軸相交于點(diǎn)P,與二次函數(shù)圖象交于不同的兩點(diǎn)A(x1 , y1),B(x2 , y2). (注:在解題過程中,你也可以閱讀后面的材料)
附:閱讀材料
任何一個(gè)一元二次方程的根與系數(shù)的關(guān)系為:兩根的和等于一次項(xiàng)系數(shù)與二次項(xiàng)系數(shù)的比的相反數(shù),兩根的積等于常數(shù)項(xiàng)與二次項(xiàng)系數(shù)的比.
即:設(shè)一元二次方程ax2+bx+c=0的兩根為x1 , x2
則:x1+x2=﹣ ,x1x2=
能靈活運(yùn)用這種關(guān)系,有時(shí)可以使解題更為簡單.
例:不解方程,求方程x2﹣3x=15兩根的和與積.
解:原方程變?yōu)椋簒2﹣3x﹣15=0
∵一元二次方程的根與系數(shù)有關(guān)系:x1+x2=﹣ ,x1x2=
∴原方程兩根之和=﹣ =3,兩根之積= =﹣15.

(1)求該二次函數(shù)的解析式.
(2)對(duì)(1)中的二次函數(shù),當(dāng)自變量x取值范圍在﹣1<x<3時(shí),請(qǐng)寫出其函數(shù)值y的取值范圍;(不必說明理由)
(3)求證:在此二次函數(shù)圖象下方的y軸上,必存在定點(diǎn)G,使△ABG的內(nèi)切圓的圓心落在y軸上,并求△GAB面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象如圖所示,根據(jù)圖象可得:

(1)拋物線頂點(diǎn)坐標(biāo);
(2)對(duì)稱軸為
(3)當(dāng)x=時(shí),y有最大值是
(4)當(dāng)時(shí),y隨著x得增大而增大.
(5)當(dāng)時(shí),y>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,左面的幾何體叫三棱柱,它有五個(gè)面,條棱,個(gè)頂點(diǎn),中間和右邊的幾何體分別是四棱柱和五棱柱.

四棱柱有________個(gè)頂點(diǎn),________條棱,________個(gè)面;

五棱柱有________個(gè)頂點(diǎn),________條棱,________個(gè)面;

你能由此猜出,六棱柱、七棱柱各有幾個(gè)頂點(diǎn),幾條棱,幾個(gè)面嗎?

棱柱有幾個(gè)頂點(diǎn),幾條棱,幾個(gè)面嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)﹣12+15﹣|﹣7﹣8|

(2)(﹣3)×(﹣9)﹣(﹣5)

(3)

(4)

化簡:(5)

(6)7a+3(a-3b)-2(b-3a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為,點(diǎn)為數(shù)軸上一動(dòng)點(diǎn).

(1) AB的距離是

(2) ①若點(diǎn)到點(diǎn)的距離比到點(diǎn)的距離大1,點(diǎn)對(duì)應(yīng)的數(shù)為

②若點(diǎn)其對(duì)應(yīng)的數(shù)為數(shù)軸上是否存在點(diǎn),使點(diǎn)到點(diǎn),點(diǎn)的距離之和為8?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由

(3)當(dāng)點(diǎn)以每秒鐘個(gè)單位長度從原點(diǎn)向右運(yùn)動(dòng)時(shí),點(diǎn)以每秒鐘個(gè)單位長度的速度從點(diǎn)向左運(yùn)動(dòng),點(diǎn)以每秒鐘個(gè)單位長度的速度從點(diǎn)向右運(yùn)動(dòng),問它們同時(shí)出發(fā) 秒鐘時(shí),(直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等邊△ABD沿BD中點(diǎn)旋轉(zhuǎn)180°得到△BDC.現(xiàn)給出下列命題:
①四邊形ABCD是菱形;
②四邊形ABCD是中心對(duì)稱圖形;
③四邊形ABCD是軸對(duì)稱圖形;
④AC=BD.
其中正確的是(寫上正確的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°,AC=60cm,A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DFBC于點(diǎn)F,連接DE,EF.

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;

(3)當(dāng)t為何值時(shí),DEF為直角三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是一塊邊長為1,周長記為P1的正三角形紙板,沿圖的底邊剪去一塊邊長為的正三角形紙板后得到圖,然后沿同一底邊依次剪去一塊更小的正三角形紙板(即其邊長為前一塊被剪如圖掉正三角形紙板邊長的)后,得圖③,④,…,記第n(n≥3)塊紙板的周長為Pn,則P2018﹣P2017的值為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案