【題目】若A(a,b)在第二、四象限的角平分線上,a與b的關(guān)系是.
【答案】互為相反數(shù)
【解析】解:∵A(a,b)在第二、四象限的角平分線上,
第二象限內(nèi)點(diǎn)的坐標(biāo)的符號特征是(-,+),
第四象限內(nèi)點(diǎn)的坐標(biāo)的符號特征是(+,-),
原點(diǎn)的坐標(biāo)是(0,0),
所以二、四象限角平分線上的點(diǎn)的橫縱坐標(biāo)的關(guān)系是a=-b.
故填a=-b.
平面直角坐標(biāo)系中,象限角平分線上的點(diǎn)的坐標(biāo)特征,一、三象限角平分線上的點(diǎn)的坐標(biāo)特征是(x,x),二、四象限角平分線上是點(diǎn)的坐標(biāo)特征是(x,-x).
根據(jù)第二、四象限的橫縱坐標(biāo)的符號相反,及角平分線上的點(diǎn)到角兩邊的距離相等,即可得出第二、四象限的角平分線上的點(diǎn)的橫縱坐標(biāo)互為相反數(shù),即可得出答案。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根,第三邊BC的長為5,當(dāng)△ABC是等腰三角形時,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. a4+a5=a9B. a4a2=a8
C. a3÷a3=0D. (﹣a2 )3=﹣a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知□ABCD,AB∥x軸,AB=6,點(diǎn)A的坐標(biāo)為(1,﹣4),點(diǎn)D的坐標(biāo)為(﹣3,4),點(diǎn)B在第四象限,點(diǎn)P是□ABCD邊上的一個動點(diǎn).
(1)若點(diǎn)P在邊BC上,PD=CD,求點(diǎn)P的坐標(biāo).
(2)若點(diǎn)P在邊AB,AD上,點(diǎn)P關(guān)于坐標(biāo)軸對稱的點(diǎn)Q落在直線y=x﹣1上,求點(diǎn)P的坐標(biāo).
(3)若點(diǎn)P在邊AB,AD,CD上,點(diǎn)G是AD與y軸的交點(diǎn),如圖2,過點(diǎn)P作y軸的平行線PM,過點(diǎn)G作x軸的平行線GM,它們相交于點(diǎn)M,將△PGM沿直線PG翻折,當(dāng)點(diǎn)M的對應(yīng)點(diǎn)落在坐標(biāo)軸上時,求點(diǎn)P的坐標(biāo).(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列式子中代數(shù)式的個數(shù)有( 。
﹣2x﹣5,﹣y,2y+1=4,4a4+2a2b3 , ﹣6.
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將進(jìn)貨單價40元的商品按50元出售,能賣出500個,已知這種商品每漲價1元,就會少銷售10個。為了賺得8000元的利潤,售價應(yīng)定為多少?這時應(yīng)進(jìn)貨多少個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com