(11·佛山)閱讀材料
我們經(jīng)常通過認識一個事物的局部或其特殊類型,來逐步認識這個事物;
比如我們通過學習兩類特殊的四邊形,即平行四邊形和梯形(繼續(xù)學習它們的特殊類型如矩形、等腰梯形等)來逐步認識四邊形;
我們對課本里特殊四邊形的學習,一般先學習圖形的定義,再探索發(fā)現(xiàn)其性質(zhì)和判定方法,然后通過解決簡單的問題鞏固所學知識;
請解決以下問題:
如圖,我們把滿足AB=CD、CB=CD且AB≠BC的四邊形ABCD叫做“箏形”;
(1)寫出箏形的兩個性質(zhì)(定義除外);
(2)寫出箏形的兩個判定方法(定義除外),并選出一個進行證明;
解:(1)
性質(zhì)1:只有一組對角相等(或者∠B=∠D,∠A≠∠C); …………………………1分
性質(zhì)2:只有一條對角線平分對角; ……………………………………………………2分
性質(zhì)有如下參考選項:
性質(zhì)3:兩條對角線互相垂直,其中只有一條被另一條平分;
性質(zhì)4:兩組對邊都不平行.
(2)判定方法1:只有一條對角線平分對角的四邊形是箏形;…………………………4分
判定方法2:兩條對角線互相垂直且只有一條被平分的四邊形是箏形;…………………6分
判定方法有如下參考選項:
判定方法3:AC⊥BD,∠B=∠D,∠A≠∠C;
判定方法4:AB=CD,∠B=∠D,∠A≠∠C;
判定方法5:AC⊥BD, AB=CD,∠A≠∠C.
判定方法1的證明:
已知:在四邊形ABCD中,對角線AC平分∠A和∠C,對角線BD不平分∠B和∠D.
求證:四邊形ABCD是箏形.
證明:∵∠BAC=∠DAC,∠BCA=∠DCA,AC=AC,∴△ABC≌△ADC.
∴AB=CD,CB=CD,①…………………………………………………………………8分
易知AC⊥BD.
又∵∠ABD≠∠CBD,
∴∠BAC≠∠BCA,∴AB≠BC.②……………………………………………………10分
由①、②知四邊形ABCD是箏形.……………………………………………………11分
判定方法2的證明:
AC⊥BD,(不妨)BE=DE→AB=CD,CB=CD.AE≠CE→AB≠BC.
判定方法3的證明:
若B、D不是關于AC對稱,則有∠ABD<∠ADB,∠CBD<∠CDB(或反之)→與∠B=∠D矛盾→B、D關于AC對稱→AB=CD,CB=CD. ∠A≠∠CAE→∠BAC≠∠BCA→AB≠BC.
判定方法4的證明:
AB=CD→∠ABD=∠ADB(結合∠B=∠D)→∠CBD=∠CDB →CB=CD.
以下同判定方法3.
判定方法5的證明:對照3和4 的證明.
其他判定方法及證明參照給分.
【解析】略
科目:初中數(shù)學 來源: 題型:閱讀理解
(11·佛山)閱讀材料
我們經(jīng)常通過認識一個事物的局部或其特殊類型,來逐步認識這個事物;
比如我們通過學習兩類特殊的四邊形,即平行四邊形和梯形(繼續(xù)學習它們的特殊類型如矩形、等腰梯形等)來逐步認識四邊形;
我們對課本里特殊四邊形的學習,一般先學習圖形的定義,再探索發(fā)現(xiàn)其性質(zhì)和判定方法,然后通過解決簡單的問題鞏固所學知識;
請解決以下問題:
如圖,我們把滿足AB=CD、CB=CD且AB≠BC的四邊形ABCD叫做“箏形”;
(1)寫出箏形的兩個性質(zhì)(定義除外);
(2)寫出箏形的兩個判定方法(定義除外),并選出一個進行證明;
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(廣西梧州卷)數(shù)學 題型:解答題
(11·佛山)閱讀材料
我們經(jīng)常通過認識一個事物的局部或其特殊類型,來逐步認識這個事物;
比如我們通過學習兩類特殊的四邊形,即平行四邊形和梯形(繼續(xù)學習它們的特殊類型如矩形、等腰梯形等)來逐步認識四邊形;
我們對課本里特殊四邊形的學習,一般先學習圖形的定義,再探索發(fā)現(xiàn)其性質(zhì)和判定方法,然后通過解決簡單的問題鞏固所學知識;
請解決以下問題:
如圖,我們把滿足AB=CD、CB=CD且AB≠BC的四邊形ABCD叫做“箏形”;
(1)寫出箏形的兩個性質(zhì)(定義除外);
(2)寫出箏形的兩個判定方法(定義除外),并選出一個進行證明;
查看答案和解析>>
科目:初中數(shù)學 來源:2010年江蘇省鹽城市阜寧縣實驗初中初三數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2009年廣東省佛山市中考數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com