【題目】定義:有一組鄰邊均和一條對(duì)角線相等的四邊形叫做鄰和四邊形.
(1)如圖1,四邊形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求證:四邊形ABCD是鄰和四邊形.
(2)如圖2,是由50個(gè)小正三角形組成的網(wǎng)格,每個(gè)小正三角形的頂點(diǎn)稱(chēng)為格點(diǎn),已知A,B,C三點(diǎn)的位置如圖,請(qǐng)?jiān)诰W(wǎng)格圖中標(biāo)出所有的格點(diǎn)D,使得以A,B,C,D為頂點(diǎn)的四邊形為鄰和四邊形.
(3)如圖3,△ABC中,∠ABC=90°,AB=4,BC=4,若存在一點(diǎn)D,使四邊形ABCD是鄰和四邊形,求鄰和四邊形ABCD的面積.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)24或16.
【解析】
(1)根據(jù)題意先由三角形的內(nèi)角和為180°求得∠ACB的度數(shù),從而根據(jù)等腰三角形的判定證得AB=AC=AD,按照鄰和四邊形的定義即可得出結(jié)論;
(2)根據(jù)題意以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)圓,與網(wǎng)格的交點(diǎn),以及△ABC外側(cè)與點(diǎn)B和點(diǎn)C組成等邊三角形的網(wǎng)格點(diǎn)即為所求;
(3)由題意先根據(jù)勾股定理求得AC的長(zhǎng),再分類(lèi)計(jì)算即可:①當(dāng)DA=DC=AC時(shí);②當(dāng)CD=CB=BD時(shí);③當(dāng)DA=DC=DB或AB=AD=BD時(shí).
解:(1)∵∠ACB=180°﹣∠ABC﹣∠BAC=70°,
∴∠ACB=∠ABC,
∴AB=AC.
∵∠ACD=∠ADC,
∴AC=AD,
∴AB=AC=AD.
∴四邊形ABCD是鄰和四邊形.
(2)如圖,格點(diǎn)D,D',D'即為所求作的點(diǎn).
(3)∵在△ABC中,∠ABC=90°,AB=4,BC=4,
∴AC==8,
顯然AB,BC,AC互不相等.分兩種情況討論:
①當(dāng)DA=DC=AC時(shí),如圖所示:
∴S△ADC=AC2=16,S△ABC=AB×BC=8.
∴S四邊形ABCD=S△ADC+S△ABC=24;
②當(dāng)CD=CB=BD時(shí),如圖所示:
∴S△BDC=BC2=12,S△ADB=AB(span>BC)=4,
∴S四邊形ABCD=S△BDC+S△ADB=16;
③當(dāng)DA=DC=DB或AB=AD=BD時(shí),鄰和四邊形ABCD不存在.
∴鄰和四邊形ABCD的面積是24或16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著寧波市江北區(qū)慈城古縣城旅游開(kāi)發(fā)的推進(jìn),到慈城旅游的全國(guó)各地游客逐年上升.深受當(dāng)?shù)乩习傩障矏?ài)的兩種本土特產(chǎn)楊梅和年糕,也深受外地游客的青睞.現(xiàn)在,有兩種特產(chǎn)大禮包的組合是這樣的:若購(gòu)買(mǎi)2筐楊梅和3盒年糕,則需花費(fèi)270元;若購(gòu)買(mǎi)1筐楊梅和4盒年糕,則需花費(fèi)260元.(楊梅、年糕分別按包裝筐和包裝盒計(jì)價(jià))
(1)求一筐楊梅、一盒年糕的售價(jià)分別是多少元?
(2)如果需購(gòu)買(mǎi)兩種特產(chǎn)共12件(1筐或1盒稱(chēng)為1件),要求年糕的盒數(shù)不高于楊梅筐數(shù)的兩倍,請(qǐng)你設(shè)計(jì)一種購(gòu)買(mǎi)方案,使所需總費(fèi)用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形都是由同樣大小的小圓圈按一定規(guī)律所組成的,其中第①個(gè)圖形中一共有個(gè)小圓圈,第②個(gè)圖形中一共有個(gè)小圓圈,第③個(gè)圖形中一共有個(gè)小圓圈,……,按此規(guī)律排列,則第⑨個(gè)圖形中小圓圈的個(gè)數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校舉行“每天鍛煉一小時(shí),健康生活一輩子”為主題的體育活動(dòng),并開(kāi)展了以下體育項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng)。為了解選擇各項(xiàng)體育活動(dòng)的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問(wèn)題:
(1)這次活動(dòng)一共調(diào)查了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求選擇籃球項(xiàng)目的人數(shù)在扇形統(tǒng)計(jì)圖中所占的百分比?
(4)若該學(xué)校有1500人,請(qǐng)你估計(jì)該學(xué)校選擇乒乓球項(xiàng)目的學(xué)生人數(shù)約是多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)圖象上的兩點(diǎn)(x1,y1)和(3,y2),若y1>y2,則x1的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(抗擊疫情)為了遏制新型冠狀病毒疫情的蔓延勢(shì)頭,各地教育部門(mén)在推遲各級(jí)學(xué)校開(kāi)學(xué)時(shí)間的同時(shí)提出“聽(tīng)課不停學(xué)”的要求,各地學(xué)校也都開(kāi)展了遠(yuǎn)程網(wǎng)絡(luò)教學(xué),某校集中為學(xué)生提供四類(lèi)在線學(xué)習(xí)方式:在線閱讀、在線聽(tīng)課、在線答疑、在線討論,為了了解學(xué)生的需求,該校通過(guò)網(wǎng)絡(luò)對(duì)本校部分學(xué)生進(jìn)行了“你對(duì)哪類(lèi)在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖。
(1)本次調(diào)查的人數(shù)有多少人?
(2)請(qǐng)補(bǔ)全條形圖;
(3)請(qǐng)求出“在線答疑”在扇形圖中的圓心角度數(shù);
(4)小寧和小娟都參加了遠(yuǎn)程網(wǎng)絡(luò)教學(xué)活動(dòng),請(qǐng)求出小寧和小娟選擇同一種學(xué)習(xí)方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為4,P 為BC上的動(dòng)點(diǎn),連接PA,作PQ⊥PA,PQ交CD于Q,連接AQ ,則AQ的最小值是( )
A.5B.C.D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖像與坐標(biāo)軸分別交于、、三點(diǎn),其中,點(diǎn)在軸正半軸上,連接、.點(diǎn)從點(diǎn)出發(fā),沿向點(diǎn)移動(dòng);同時(shí)點(diǎn)從點(diǎn)出發(fā),沿軸向點(diǎn)移動(dòng),它們移動(dòng)的速度都是每秒1個(gè)單位長(zhǎng)度,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止移動(dòng),連接,設(shè)移動(dòng)時(shí)間為.
(1)若時(shí),與相似,求這個(gè)二次函數(shù)的表達(dá)式;
(2)若可以為直角三角形,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AB為⊙O的直徑,C為⊙O上一點(diǎn),D為BC延長(zhǎng)線一點(diǎn),且BC=CD,直線CE與⊙O相切于點(diǎn)C,與AD相交于點(diǎn)E.
(1)求證:CE⊥AD;
(2)如圖2,設(shè)BE與⊙O交于點(diǎn)F,AF的延長(zhǎng)線與CE交于點(diǎn)P.
①求證:∠PCF=∠CBF;
②若PF=6,tan∠PEF=,求PC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com