【題目】為響應(yīng)珠海環(huán)保城市建設(shè),我市某污水處理公司不斷改進(jìn)污水處理設(shè)備,新設(shè)備每小時(shí)處理污水量是原系統(tǒng)的1.5倍,原來(lái)處理1200m3污水所用的時(shí)間比現(xiàn)在多用10小時(shí).

(1)原來(lái)每小時(shí)處理污水量是多少m2?

(2)若用新設(shè)備處理污水960m3,需要多長(zhǎng)時(shí)間?

【答案】(1)原來(lái)每小時(shí)處理污水量是40m2;(2)需要16小時(shí).

【解析】試題分析: 設(shè)原來(lái)每小時(shí)處理污水量是xm2,新設(shè)備每小時(shí)處理污水量是1.5xm2,根據(jù)原來(lái)處理1200m3污水所用的時(shí)間比現(xiàn)在多用10小時(shí)這個(gè)等量關(guān)系,列出方程求解即可.

根據(jù)即可求出.

試題解析: 設(shè)原來(lái)每小時(shí)處理污水量是xm2,新設(shè)備每小時(shí)處理污水量是1.5xm2,

根據(jù)題意得:

去分母得:

解得:

經(jīng)檢驗(yàn) 是分式方程的解,且符合題意,

則原來(lái)每小時(shí)處理污水量是40m2

2)根據(jù)題意得: (小時(shí)),

則需要16小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,ABC=2C,BE平分∠ABCACE,ADBED,下列結(jié)論:①AC﹣BE=AE;②點(diǎn)E在線段BC的垂直平分線上;③∠DAE=C;BC=4AD,其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中有點(diǎn)B﹣1,0)和y軸上一動(dòng)點(diǎn)A0,a),其中a0,以A點(diǎn)為直角頂點(diǎn)在第二象限內(nèi)作等腰直角△ABC,設(shè)點(diǎn)C的坐標(biāo)為(c,d).

1)當(dāng)a=2時(shí),則C點(diǎn)的坐標(biāo)為   ,   );

2)動(dòng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,試判斷c+d的值是否發(fā)生變化?若不變,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.

3)當(dāng)a=2時(shí),在坐標(biāo)平面內(nèi)是否存在一點(diǎn)P(不與點(diǎn)C重合),使△PAB與△ABC全等?若存在,直接寫(xiě)出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

;

;

;

;

;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫(xiě)出圖象經(jīng)過(guò)點(diǎn)(1,0)、(0,1)的三個(gè)不同的函數(shù)解析式:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=|x﹣1|的圖象與性質(zhì)進(jìn)行了探究.下面是小慧的探究過(guò)程,請(qǐng)補(bǔ)充完成:

(1)函數(shù)y=|x﹣1|的自變量x的取值范圍是   ;

(2)列表,找出y與x的幾組對(duì)應(yīng)值.

x

﹣1

0

1

2

3

y

b

1

0

1

2

其中,b=   ;

(3)在平面直角坐標(biāo)系xOy中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并畫(huà)出該函數(shù)的圖象;

(4)寫(xiě)出該函數(shù)的一條性質(zhì):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點(diǎn)D在邊AB上.

(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;

(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EHAB于點(diǎn)H,過(guò)點(diǎn)EGEAB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一部記錄片播放了關(guān)于地震的資料及一個(gè)有關(guān)地震預(yù)測(cè)的討論,一位專(zhuān)家指出:在未來(lái)20年,A城市發(fā)生地震的機(jī)會(huì)是三分之二

對(duì)這位專(zhuān)家的陳述下面有四個(gè)推斷:

×20≈13.3,所以今后的13年至14年間,A城市會(huì)發(fā)生一次地震;

大于50%,所以未來(lái)20年,A城市一定發(fā)生地震;

在未來(lái)20年,A城市發(fā)生地震的可能性大于不發(fā)生地震的可能性;

不能確定在未來(lái)20年,A城市是否會(huì)發(fā)生地震;

其中合理的是(   )

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索三角形的內(nèi)角與外角平分線(三角形的外角是三角形的一邊與另一邊的延長(zhǎng)線所組成的角):

(1)如圖,在ABC中,BO平分ABC,CO平分ACB,若A=50°,則BOC=________;此時(shí)ABOC有怎樣的關(guān)系?試說(shuō)明理由.

(2)如圖②,BO平分ABC,CO平分ACE,若A=50°,則BOC=________;此時(shí)∠ABOC有怎樣的關(guān)系?試說(shuō)明理由.

(3)如圖③,△ABC的外角CBE,∠BCF的平分線BO,CO相交于點(diǎn)O,若A=50°,BOC=______;此時(shí)ABOC有怎樣的關(guān)系?(不需說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案