【題目】如圖,在平行四邊形ABCD中,BD是對(duì)角線,∠ADB=90°,E、F分別為邊AB、CD的中點(diǎn).

(1)求證:四邊形DEBF是菱形;

(2)若BE=4,∠DEB=120°,點(diǎn)MBF的中點(diǎn),當(dāng)點(diǎn)PBD邊上運(yùn)動(dòng)時(shí),則PF+PM的最小值為   ,并在圖上標(biāo)出此時(shí)點(diǎn)P的位置.

【答案】(1)詳見(jiàn)解析;(2).

【解析】

1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半,以及平行四邊形的對(duì)邊相等證明四邊形DEBF的四邊相等即可證得;

2)連接EMEMBD的交點(diǎn)就是P,FF+PM的最小值就是EM的長(zhǎng)證明△BEF是等邊三角形,利用三角函數(shù)求解

1∵平行四邊形ABCD,ADBC,∴∠DBC=ADB=90°.

∵△ABDADB=90°,E時(shí)AB的中點(diǎn),DE=AB=AE=BE

同理BF=DF

∵平行四邊形ABCD,AB=CD,DE=BE=BF=DF,∴四邊形DEBF是菱形;

2)連接BF

∵菱形DEBF,DEB=120°,∴∠EFB=60°,∴△BEF是等邊三角形

MBF的中點(diǎn),EMBF

EM=BEsin60°==2

PF+PM的最小值是2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)A,B,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)HA、H、B在一條直線上),并新修一條路CH,測(cè)得CB3千米,CH2.4千米,HB1.8千米.

1)問(wèn)CH是否為從村莊C到河邊的最近路?(即問(wèn):CHAB是否垂直?)請(qǐng)通過(guò)計(jì)算加以說(shuō)明;

2)求原來(lái)的路線AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)的圖像交于

1)求出m、n的值;

2)直接寫(xiě)出不等式的解集;

3)求出ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,等腰直角△ABOO點(diǎn)是坐標(biāo)原點(diǎn),A的坐標(biāo)是(﹣4,0),直角頂點(diǎn)B在第二象限,等腰直角△BCDC點(diǎn)在y軸上移動(dòng),我們發(fā)現(xiàn)直角頂點(diǎn)D點(diǎn)隨之在一條直線上移動(dòng),這條直線的解析式是(  )

A. y=﹣2x+1 B. y=﹣x+2 C. y=﹣3x﹣2 D. y=﹣x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BCAB,連結(jié)OC,弦ADOC,直線CDBA的延長(zhǎng)線于點(diǎn)E

(1)求證:直線CD是⊙O的切線;

(2)若DE=2BC,AD=5,求OC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:小明遇到這樣一個(gè)問(wèn)題:已知:在ABC中,AB,BC,AC三邊的長(zhǎng)分別為,求ABC的面積.小明是這樣解決問(wèn)題的:如圖①所示,先畫(huà)一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)ABC(即ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),從而借助網(wǎng)格就能計(jì)算出ABC的面積.他把這種解決問(wèn)題的方法稱為構(gòu)圖法.請(qǐng)回答:

1)圖1ABC的面積為   ;

參考小明解決問(wèn)題的方法,完成下列問(wèn)題:

2)圖2是一個(gè)6×6的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1).

①利用構(gòu)圖法在答卷的圖2中畫(huà)出三邊長(zhǎng)分別為、2的格點(diǎn)DEF;

②計(jì)算DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖等邊ABCDAC的中點(diǎn),EBC的延長(zhǎng)線上,且CECD,過(guò)DDFBE于點(diǎn)E

)求證:BDE為等腰三角形;

)請(qǐng)猜想FCBF間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線l1:y=2x+3與直線l2:y=kx+b的交點(diǎn)Ay軸上,直線l3:y=x與直線l1相交于點(diǎn)B與直線l2相交于點(diǎn)C1,1.

1)求直線l2的解析式和B點(diǎn)的坐標(biāo);

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,點(diǎn)EAC的中點(diǎn),線段AEA為中心順時(shí)針旋轉(zhuǎn),點(diǎn)E落在線段BE上的D處,線段CEC為中心順時(shí)針旋轉(zhuǎn),點(diǎn)E落在BE的延長(zhǎng)線上的點(diǎn)F處,連接AF,CD.

1)求證:四邊形ADCF是平行四邊形;

2)當(dāng)BD=CD時(shí),探究線段ABBC,BF三者之間的等量關(guān)系,并證明;

3)在(2)的條件下,若DE=1,試求BC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案