如圖(1),四邊形ABCD中,將頂點為A的角繞著頂點A順時針旋轉,角的一條邊與DC的延長線交于點F,角的另一條邊與CB的延長線交于點E,連接EF
(1)若四邊形ABCD為正方形,當∠EAF=45°時,有EF=DF-BE,請你思考如何證明這個結論(只思考,不必寫出證明過程);
(2)如圖(2),如果在四邊形ABCD中,AB=AD,∠ABC=∠ADC=90°,當∠EAF=∠BAD時,EF與DF、BE之間有怎樣的數(shù)量關系?請寫出它們之間的關系式(只需寫出結論);
(3)如圖(3),如果四邊形ABCD中,AB=AD,∠ABC與∠ADC互補,當∠EAF=∠BAD時,EF與DF、BE之間有怎樣的數(shù)量關系?請寫出它們之間的關系式并給予證明;
(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF的周長(直接寫出結果即可)。
解:(1)證明:在DF上截取DM=BE;
∵AD=AB,∠ABE=∠ADM=90°,
∴△ABE≌△ADM,
∴AE=AM,∠EAB=∠DAM,
∵∠EAF=45°,且∠EAB=∠DAM,
∴∠BAF+∠DAM=45°,即∠MAF=45°=∠EAF,
又∵AE=AM,AF=AF,
∴△AEF≌△AMF,得EF=FM,
∵DF=DM+FM,
∴DF=BE+EF,即EF=DF-BE;
(2)EF=DF-BE;
(3)EF=DF-BE;
證明:在DF上截取DM=BE,
∵∠D+∠ABC=∠ABE+∠ABC=180°,
∴∠D=∠ABE,
∴AD=AB,
∴△ADM≌△ABE,
∴AM=AE,∠DAM=∠BAE;
∵∠EAF=∠BAE+∠BAF=∠BAD,
∴∠DAM+∠BAF=∠BAD,
∴∠MAF=∠BAD,
∵AF是△EAF與△MAF的公共邊,
∴△EAF≌△MAF,
∴EF=MF,
∵MF=DF-DM=DF-BE,
∴EF=DF-BE;
(4)△CEF的周長為15。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

56、如圖,O為平行四邊形ABCD的對角線AC的中點,過點O作一條直線分別與AB,CD交于點M,N,點E,F(xiàn)在直線MN上,且OE=OF.
(1)圖中共有幾對全等三角形,請把它們都寫出來;
(2)求證:∠MAE=∠NCF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,已知平行四邊形ABCD.
(1)用直尺和圓規(guī)作出∠ADC的平分線DE,交AB于點E,(保留作圖痕跡,不要求寫作法);
(2)求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知平行四邊形ABCD,E是邊AB的中點,連接AC、DE交于點O.記向量
AB
=
a
,
AD
=
b
,則向量
OE
=
 
(用向量
a
、
b
表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖(1),四邊形ABCD內部有一點P,使得S△APD+S△BPC=S△PAB+S△PCD,那么這樣的點P叫做四邊形ABCD的等積點.
(1)如果四邊形ABCD內部所有的點都是等積點,那么這樣的四邊形叫做等積四邊形.
①請寫出你知道的等積四邊形:
 
 
,
 
 
,(四例)
②如圖(2),若四邊形ABCD是平行四邊形且S△ABP=8,S△APD=7,S△BPC=15,則S△PCD=
 

(2)如圖(3),等腰梯形ABCD,AD=4,BC=10,AB=5,直線l為等腰梯形的對稱軸,分別交AD于點E,交BC于點F.
①請在直線l上找到等腰梯形的等積點,并求出PE的長度.
②請找出等腰梯形ABCD內部所有的等積點,并畫圖表示.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

畫出如圖所示的平行四邊形ABCD繞點D順時針旋轉90°后的圖形,再經(jīng)幾次90°旋轉可以與原來圖形重合.

查看答案和解析>>

同步練習冊答案