【題目】某賓館有50個房間供游客居住,當每個房間定價120元時,房間會全部住滿,當每個房間每天的定價每增加10元時,就會有一個房間空閑,如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設每個房間定價增加10x元(x為整數(shù)).
(1)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關系式.
(2)設賓館每天的利潤為W元,當每間房價定價為多少元時,賓館每天所獲利潤最大,最大利潤是多少?
(3)某日,賓館了解當天的住宿的情況,得到以下信息:①當日所獲利潤不低于5000元,②賓館為游客居住的房間共支出費用沒有超過600元,③每個房間剛好住滿2人.問:這天賓館入住的游客人數(shù)最少有多少人?
【答案】(1)y=50﹣x,(0≤x≤50,且x為整數(shù));(2)當每間房價定價為320元時,賓館每天所獲利潤最大,最大利潤是9000元;(3)20.
【解析】
試題分析:(1)根據(jù)每天游客居住的房間數(shù)量等于50﹣減少的房間數(shù)即可解決問題.
(2)構建二次函數(shù),利用二次函數(shù)的性質解決問題.
(3)根據(jù)條件列出不等式組即可解決問題.
試題解析:(1)根據(jù)題意,得:y=50﹣x,(0≤x≤50,且x為整數(shù));
(2)W=(120+10x﹣20)(50﹣x)=
∵a=﹣10<0,∴當x=20時,W取得最大值,W最大值=9000元.
答:當每間房價定價為320元時,賓館每天所獲利潤最大,最大利潤是9000元;
(3)由,解得20≤x≤40.
當x=40時,這天賓館入住的游客人數(shù)最少,最少人數(shù)為2y=2(﹣x+50)=20(人).
科目:初中數(shù)學 來源: 題型:
【題目】有一家苗圃計劃植桃樹和柏樹,根據(jù)市場調查與預測,種植桃樹的利潤(萬元)與投資成本x(萬元)滿足如圖①所示的二次函數(shù);種植柏樹的利潤(萬元)與投資成本x(萬元)滿足如圖②所示的正比例函數(shù)=kx.
(1)分別求出利潤(萬元)和利潤(萬元)關于投資成本x(萬元)的函數(shù)關系式;
(2)如果這家苗圃以10萬元資金投入種植桃樹和柏樹,桃樹的投資成本不低于2萬元且不高于8萬元,苗圃至少獲得多少利潤?最多能獲得多少利潤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們可以只用直尺和圓規(guī)作出圓的部分內(nèi)接正多邊形.在我們目前所學知識的范圍內(nèi),下列圓的內(nèi)接正多邊形不可以用尺規(guī)作圖作出的是( )
A.正三角形B.正四邊形C.正六邊形D.正七邊形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,將二次函數(shù)的圖象M沿x軸翻折,把所得到的圖象向右平移2個單位長度后再向上平移8個單位長度,得到二次函數(shù)圖象N.
(1)求N的函數(shù)表達式;
(2)設點P(m,n)是以點C(1,4)為圓心、1為半徑的圓上一動點,二次函數(shù)的圖象M與x軸相交于兩點A、B,求的最大值;
(3)若一個點的橫坐標與縱坐標均為整數(shù),則該點稱為整點.求M與N所圍成封閉圖形內(nèi)(包括邊界)整點的個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.
(1)畫出△ABC關于x軸的對稱圖形△A1B1C1;
(2)將△A1B1C1沿x軸方向向左平移3個單位后得到△A2B2C2,寫出頂點A2,B2,C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一個足球垂直水平地面向上踢,時間為t(秒)時該足球距離地面的高度h(米)適用公式(0≤t≤4).
(1)當t=3時,求足球距離地面的高度;
(2)當足球距離地面的高度為10米時,求t;
(3)若存在實數(shù),()當t=或時,足球距離地面的高度都為m(米),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把分子為1的分數(shù)叫做單位分數(shù),如 …,任何一個單位分數(shù)都可以拆分成兩個不同的單位分數(shù)的和,如 , , …觀察上述式子的規(guī)律:
(1)把 寫成兩個單位分數(shù)之和;
(2)把 表示成兩個單位分數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個幾何體的小正方體的個數(shù)是( )
A.5或6或7 B.6或7 C.6或7或8 D.7或8或9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com