【題目】為保障我國(guó)海外維和部隊(duì)官兵的生活,現(xiàn)需通過A港口、B港口分別運(yùn)送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運(yùn)送物資到港口的費(fèi)用(元/噸)如表所示:
港口 | 運(yùn)費(fèi)(元/臺(tái)) | |
甲庫 | 乙?guī)?/span> | |
A港 | 14 | 20 |
B港 | 10 | 8 |
(1)設(shè)從甲倉庫運(yùn)送到A港口的物資為x噸,求總運(yùn)費(fèi)y(元)與x(噸)之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求出最低費(fèi)用,并說明費(fèi)用最低時(shí)的調(diào)配方案.
【答案】
(1)
解:設(shè)從甲倉庫運(yùn)x噸往A港口,則從甲倉庫運(yùn)往B港口的有(80﹣x)噸,
從乙倉庫運(yùn)往A港口的有(100﹣x)噸,運(yùn)往B港口的有50﹣(80﹣x)=(x﹣30)噸,
所以y=14x+20(100﹣x)+10(80﹣x)+8(x﹣30)=﹣8x+2560,
x的取值范圍是30≤x≤80
(2)
解:由(1)得y=﹣8x+2560y隨x增大而減少,所以當(dāng)x=80時(shí)總運(yùn)費(fèi)最小,
當(dāng)x=80時(shí),y=﹣8×80+2560=1920,
此時(shí)方案為:把甲倉庫的全部運(yùn)往A港口,再從乙倉庫運(yùn)20噸往A港口,乙倉庫的余下的全部運(yùn)往B港口
【解析】(1)根據(jù)題意表示出甲倉庫和乙倉庫分別運(yùn)往A、B兩港口的物資數(shù),再由等量關(guān)系:總運(yùn)費(fèi)=甲倉庫運(yùn)往A港口的費(fèi)用+甲倉庫運(yùn)往B港口的費(fèi)用+乙倉庫運(yùn)往A港口的費(fèi)用+乙倉庫運(yùn)往B港口的費(fèi)用列式并化簡(jiǎn);最后根據(jù)不等式組 得出x的取值;(2)因?yàn)樗玫暮瘮?shù)為一次函數(shù),由增減性可知:y隨x增大而減少,則當(dāng)x=80時(shí),y最小,并求出最小值,寫出運(yùn)輸方案.本題考查了一次函數(shù)的應(yīng)用,屬于方案問題;解答本題的關(guān)鍵是根據(jù)題意表示出兩倉庫運(yùn)往A、B兩港口的物資數(shù),正確得出y與x的函數(shù)關(guān)系式;另外,要熟練掌握求最值的另一個(gè)方法:運(yùn)用函數(shù)的增減性來判斷函數(shù)的最值問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一圓形紙片向右、向上兩次對(duì)折后得到如圖2所示的扇形AOB.已知OA=6,取OA的中點(diǎn)C,過點(diǎn)C作CD⊥OA交 于點(diǎn)D,點(diǎn)F是 上一點(diǎn).若將扇形BOD沿OD翻折,點(diǎn)B恰好與點(diǎn)F重合,用剪刀沿著線段BD,DF,F(xiàn)A依次剪下,則剪下的紙片(形狀同陰影圖形)面積之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫出利潤(rùn)W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∵DE∥BC(已知),∴∠1=____(____),∠2=_______(_____)又∵∠1=∠2(已知),∴∠B=∠C(____),∵∠3=∠B(已知),∴∠3=∠C(_________),∴DF∥AC(______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】宜賓市某化工廠,現(xiàn)有A種原料52千克,B種原料64千克,現(xiàn)用這些原料生產(chǎn)甲、乙兩種產(chǎn)品共20件.已知生產(chǎn)1件甲種產(chǎn)品需要A種原料3千克,B種原料2千克;生產(chǎn)1件乙種產(chǎn)品需要A種原料2千克,B種原料4千克,則生產(chǎn)方案的種數(shù)為( 。
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對(duì)外銷售,某樓盤共23層,銷售價(jià)格如下:第八層樓房售價(jià)為4000元/米2 , 從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元,已知該樓盤每套樓房面積均為120米2 .
若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價(jià)8%,另外每套樓房贈(zèng)送a元裝修基金;
方案二:降價(jià)10%,沒有其他贈(zèng)送.
(1)請(qǐng)寫出售價(jià)y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請(qǐng)幫他計(jì)算哪種優(yōu)惠方案更加合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由一些相同的小正方體搭成的幾何體的左視圖和俯視圖如圖所示,請(qǐng)?jiān)诰W(wǎng)格中涂出一種該幾何體的主視圖,且使該主視圖是軸對(duì)稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在周長(zhǎng)為12的菱形ABCD中,AE=1,AF=2,若P為對(duì)角線BD上一動(dòng)點(diǎn),則EP+FP的最小值為( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com