已知:如圖,把矩形OCBA放置于直角坐標系中,OC=3,BC=2,取AB的中點M,連接MC,把△MBC沿x軸的負方向平移OC的長度后得到△DAO.
(1)試直接寫出點D的坐標;
( 2 )已知點B與點D在經過原點的拋物線上,點P在第一象限內的該拋物線上移動,過點P作PQ⊥x軸于點Q,連接OP.若以O、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標;
(3)試問在(2)拋物線的對稱軸上是否存在一點T,使得
|TO-TB|的值最大?若存在,則求出點T點的坐標;若不存在,則說明理由.
【答案】分析:(1)根據平移的性質得出D點的坐標,AD=BM,D點的縱坐標等于M點的縱坐標;
(2)根據D點的坐標為(-1.5,2);B點的坐標為(3,2),以及圖象過(0,0),得出二次函數(shù)解析式,進而根據相似三角形的性質得出P點的坐標;
(3)因為TD=TB,所以求|TO-TB|的值最大轉化為求|TO-TD|的最大值,只有T、D、O在同一條直線上的時候,才能取得最大值,最大值為OD的長度,因此延長DO,與對稱軸的交點即為所求之T點.
解答:解:(1)∵OC=3,BC=2,取AB的中點M,連接MC,把△MBC沿x軸的負方向平移OC的長度后得到△DAO.
∴D點的坐標為(-1.5,2);

(2)根據D點的坐標為(-1.5,2);B點的坐標為(3,2),
以及圖象過(0,0),
∴代入二次函數(shù)解析式y(tǒng)=ax 2+bx+c,

解得:,
∴二次函數(shù)解析式為:y=x 2-x,
假設P點的橫坐標為x,縱坐標為:x 2-x,
∴當△DAO∽△PQO,
,
,
解得:x=0(不合題意舍去)或x=,
當x=時,y=x 2-x=
∴P點的坐標為:(,),
當△DAO∽△OQP,
,
,
解得:x=0(不合題意舍去)或x=4.5,
當x=4.5時,y=x 2-x=6,
∴P點的坐標為:(4.5,6),
故P點的坐標為:(4.5,6)或(,);

(3)因為TD=TB,所以求|TO-TB|的值最大轉化為求|TO-TD|的最大值,
T、D、O組成三角形,根據兩邊之差小于第3邊,即|TO-TD|<OD,
只有T、D、O在同一條直線上的時候,才能取得最大值,最大值為OD的長度,
因此延長DO,與對稱軸的交點即為所求之T點,
將D(-1.5,2),O(0,0)代入y=kx+b,
k=-
y=-x,
∴x=
y=-1,
即T點的坐標為(,-1),
故使得|TO-TB|的值最大T點的坐標為(,-1).
點評:此題主要考查了二次函數(shù)的綜合應用,主要涉及待定系數(shù)法求二次函數(shù)解析式以及相似三角形的應用等知識,主要考查學生數(shù)形結合的數(shù)學思想方法,以及等量代換思想的靈活應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,把矩形OCBA放置于直角坐標系中,OC=3,BC=2,取AB的中點M,連接MC,把△MBC沿x軸的負方向平移OC的長度后得到△DAO.
(1)試直接寫出點D的坐標;
( 2 )已知點B與點D在經過原點的拋物線上,點P在第一象限內的該拋物線上移動,過點P作PQ⊥x軸于點Q,連接OP.若以O、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標;
(3)試問在(2)拋物線的對稱軸上是否存在一點T,使得
|TO-TB|的值最大?若存在,則求出點T點的坐標;若不存在,則說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,把矩形OCBA放置于直角坐標系中,OC=3,BC=2,取AB的中精英家教網點M,連接MC,把△MBC沿x軸的負方向平移OC的長度后得到△DAO.
(1)試直接寫出點D的坐標;
(2)已知點B與點D在經過原點的拋物線上,點P在第一象限內的該拋物線上移動,過點P作PQ⊥x軸于點Q,連接OP.
①若以O、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標;
②試問在拋物線的對稱軸上是否存在一點T,使得|TO-TB|的值最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,把矩形OCBA放置于直角坐標系中,OC=3,BC=2,取AB的中點M,連結MC,把△MBC沿x軸的負方向平移OC的長度后得到△DAO.
(1)直接寫出點D的坐標;
(2)已知點B與點D在經過原點的拋物線上,點P在第一象限內的該拋物線上移動,過點P作PQ⊥x軸于點Q,連結OP.若以O、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•北京)已知:如圖,把矩形紙片OABC放入直角坐標系xOy中,使OA、OC分別落在x軸、y軸的正半軸上,連接AC,將△ABC沿AC翻折,點B落在該坐標平面內,設這個落點為D,CD交x軸于點E.如果CE=5,OC、OE的長是關于x的方程x2+(m-1)x+12=0的兩個根,并且OC>OE.
(1)求點D的坐標;
(2)如果點F是AC的中點,判斷點(8,-20)是否在過D、F兩點的直線上,并說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年5月中考數(shù)學模擬試卷(15)(解析版) 題型:解答題

已知:如圖,把矩形OCBA放置于直角坐標系中,OC=3,BC=2,取AB的中點M,連接MC,把△MBC沿x軸的負方向平移OC的長度后得到△DAO.
(1)試直接寫出點D的坐標;
(2)已知點B與點D在經過原點的拋物線上,點P在第一象限內的該拋物線上移動,過點P作PQ⊥x軸于點Q,連接OP.
①若以O、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標;
②試問在拋物線的對稱軸上是否存在一點T,使得|TO-TB|的值最大?

查看答案和解析>>

同步練習冊答案