【題目】在平面直角坐標系中,A(a,0),C(0,c)且滿足:,長方形ABCO在坐標系中(如圖)點O為坐標系的原點。
(1)求點B的坐標。
(2)如圖1,若點M從點A出發(fā),以2個單位/秒的速度向右運動(不超過點0),點N從原點O出發(fā),以1個單位/秒的速度向下運動(不超過點C),設M、N兩點同時出發(fā),在它們運動的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍。
(3)如圖2,E為x軸負半軸上一點,且,F是x軸正半軸上一動點,∠ECF的平分線CD交BE的延長線于點D,在點F運動的過程中,請?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系并說明理由。
(注:三角形三個內(nèi)角的和等于)
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點C在∠AOB的一邊OA上,過點C的直線DE∥OB,CF平分∠ACD,CG⊥CF于點C.
(1)若∠O=40°,求∠ECF的度數(shù);
(2)求證:CG平分∠OCD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)在第一象限內(nèi)的圖像交于和兩點.
(1)求反比例函數(shù)的表達式;
(2)在第一象限內(nèi),當一次函數(shù)的值大于反比例函數(shù)的值時,寫出自變量的取值范圍;
(3)求面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個坡角為40°的斜坡上有一棵樹BC,樹高4米.當太陽光AC與水平線成70°角時,該樹在斜坡上的樹影恰好為線段AB,求樹影AB的長.(結(jié)果保留一位小數(shù))
(參考數(shù)據(jù):sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題.
程大位,明代商人,珠算發(fā)明家,被稱為珠算之父、卷尺之父.少年時,讀書極為廣博,對數(shù)學頗感興趣,60歲時完成其杰作《直指算法統(tǒng)宗》(簡稱《算法統(tǒng)宗》).
在《算法統(tǒng)宗》里記載了一道趣題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾丁?意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完.試問大、小和尚各多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=115°,∠EOF =155°,OA平分∠EOC,OB平分∠DOF,
(1)求∠AOE+∠FOB度數(shù);
(2)求∠COD度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(x2-4x+2)(x2-4x+6)+4進行因式分解的過程.
解:設x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列問題:
(1)該同學第二步到第三步運用了因式分解的_______.
A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)
若不徹底,請直接寫出因式分解的最后結(jié)果_________.
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場為做好“家電下鄉(xiāng)”的惠民服務,決定從廠家購進甲、乙、丙三種不同型號的電視機108臺,其中甲種電視機的臺數(shù)是丙種的4倍,購進三種電視機的總金額不超過147 000元,已知甲、乙、丙三種型號的電視機的出廠價格分別為1 000元/臺,1 500元/臺,2 000元/臺.
(1)求該商場至少購買丙種電視機多少臺?
(2)若要求甲種電視機的臺數(shù)不超過乙種電視機的臺數(shù),問有哪些購買方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com