【題目】在平面直角坐標系中,Aa,0),C0c)且滿足:,長方形ABCO在坐標系中(如圖)點O為坐標系的原點。

1)求點B的坐標。

2)如圖1,若點M從點A出發(fā),以2個單位/秒的速度向右運動(不超過點0),點N從原點O出發(fā),以1個單位/秒的速度向下運動(不超過點C),設M、N兩點同時出發(fā),在它們運動的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍。

3)如圖2,Ex軸負半軸上一點,且Fx軸正半軸上一動點,∠ECF的平分線CDBE的延長線于點D,在點F運動的過程中,請?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系并說明理由。

(注:三角形三個內(nèi)角的和等于

【答案】(1)B-6-3);(29;(3

【解析】

1)根據(jù)可得的值,由圖可知點B的坐標;

2)可設時間為t,用含t的式子表示出,,表示出四邊形MBCN的面積求解即可;

(3)通過角之間的關(guān)系轉(zhuǎn)化表示出間的關(guān)系,可得結(jié)論.

解:(1)根據(jù)可得,所以點B坐標為(-6-3);

2)設時間為t,所以,,所以,

四邊形MBCN的面積,與時間t無關(guān),

所以四邊形MBCN的面積不發(fā)生變化,其值為9.

3)過點E作BC于點G,延長BCH ,如圖所示

由長方形ABCO可知

平分∠ECF

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點C在∠AOB的一邊OA上,過點C的直線DEOBCF平分∠ACD,CGCF于點C

(1)若∠O40°,求∠ECF的度數(shù);

(2)求證:CG平分∠OCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,,的中點,,,求證

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)在第一象限內(nèi)的圖像交于兩點.

1)求反比例函數(shù)的表達式;

2)在第一象限內(nèi),當一次函數(shù)的值大于反比例函數(shù)的值時,寫出自變量的取值范圍;

3)求面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個坡角為40°的斜坡上有一棵樹BC,樹高4米.當太陽光AC與水平線成70°角時,該樹在斜坡上的樹影恰好為線段AB,求樹影AB的長.(結(jié)果保留一位小數(shù))

(參考數(shù)據(jù):sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題.

程大位,明代商人珠算發(fā)明家,被稱為珠算之父、卷尺之父.少年時讀書極為廣博,對數(shù)學頗感興趣,60歲時完成其杰作《直指算法統(tǒng)宗》簡稱《算法統(tǒng)宗》).

在《算法統(tǒng)宗》里記載了一道趣題一百饅頭一百僧,大僧三個更無爭小僧三人分一個,大小和尚各幾丁?意思是100個和尚分100個饅頭如果大和尚1人分3,小和尚3人分1,正好分完.試問大、小和尚各多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=115°,EOF =155°OA平分∠EOC,OB平分∠DOF,

1求∠AOE+FOB度數(shù);

2求∠COD度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設x24x=y

原式=y+2)(y+6+4 (第一步)

= y2+8y+16 (第二步)

=y+42 (第三步)

=x24x+42 (第四步)

回答下列問題:

1)該同學第二步到第三步運用了因式分解的_______

A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)

若不徹底,請直接寫出因式分解的最后結(jié)果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為做好“家電下鄉(xiāng)”的惠民服務,決定從廠家購進甲、乙、丙三種不同型號的電視機108臺,其中甲種電視機的臺數(shù)是丙種的4倍,購進三種電視機的總金額不超過147 000元,已知甲、乙、丙三種型號的電視機的出廠價格分別為1 000元/臺,1 500元/臺,2 000元/臺.

(1)求該商場至少購買丙種電視機多少臺?

(2)若要求甲種電視機的臺數(shù)不超過乙種電視機的臺數(shù),問有哪些購買方案?

查看答案和解析>>

同步練習冊答案