【題目】已知拋物線G1:y=ax2+bx+c的頂點(diǎn)為(2,﹣3),且經(jīng)過點(diǎn)(4,1).

(1)求拋物線G1的解析式;

(2)將拋物線G1先向左平移3個(gè)單位,再向下平移1個(gè)單位后得到拋物線G2,且拋物線G2與x軸的負(fù)半軸相交于A點(diǎn),求A點(diǎn)的坐標(biāo);

(3)如果直線m的解析式為,點(diǎn)B是(2)中拋物線G2上的一個(gè)點(diǎn),且在對(duì)稱軸右側(cè)部分(含頂點(diǎn))上運(yùn)動(dòng),直線n過點(diǎn)A和點(diǎn)B.問:是否存在點(diǎn)B,使直線m、n、x軸圍成的三角形和直線m、n、y軸圍成的三角形相似?若存在,求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.

【答案】(1):y=(x﹣2)2﹣3=x2﹣4x+1,(2)A(﹣3,0).(3)見解析

【解析】

試題分析:(1)先設(shè)為頂點(diǎn)式,再把頂點(diǎn)坐標(biāo)和經(jīng)過的點(diǎn)(4,1)代入即可解決,

(2)根據(jù)平移規(guī)則直接寫出拋物線G2的解析式,令y=0,即可求出點(diǎn)A的坐標(biāo),

(3)分為交點(diǎn)咋x軸上方,與下方進(jìn)行分析,根據(jù)相似確定角的大小,進(jìn)一步得到直線n的斜率,求出與y軸的交點(diǎn)坐標(biāo),由點(diǎn)A(﹣3,0),運(yùn)用待定系數(shù)法,確定直線n的解析式,聯(lián)立拋物線G2,解方程組即可求解.

解:由拋物線G1:y=ax2+bx+c的頂點(diǎn)為(2,﹣3),且經(jīng)過點(diǎn)(4,1),

可設(shè)拋物線G1:y=a(x﹣2)2﹣3,

把(4,1)代入得:1=4a﹣3,解得:a=1,

所以拋物線G1:y=(x﹣2)2﹣3=x2﹣4x+1,

(2)拋物線G1:y=(x﹣2)2﹣3先向左平移3個(gè)單位,再向下平移1個(gè)單位后得到拋物線G2:y=(x+1)2﹣4,

令y=0,得:0=(x+1)2﹣4,解得:x=﹣3,或x=1(舍去),

所以點(diǎn)A(﹣3,0).

(3)直線m與x軸,y軸的交點(diǎn)分別為F,E,

當(dāng)直線n與G2交點(diǎn)在x軸上方時(shí),直線n與x軸,y軸的交點(diǎn)為A,D,與拋物線交點(diǎn)B,與直線m交與點(diǎn)C,

當(dāng)直線n與G2交點(diǎn)在x軸下方時(shí),直線n1與x軸,y軸的交點(diǎn)為A,H,與拋物線交點(diǎn)B1,與直線m交與點(diǎn)L,

當(dāng)直線n與G2交點(diǎn)在x軸上方時(shí),如圖1:

由題意CDE∽△CFA,此時(shí)有:CDE=CFA

直線m的解析式為,當(dāng)x=0時(shí),y=3,當(dāng)y=0時(shí),x=﹣6,

點(diǎn)E(0,3),點(diǎn)F(﹣6,0),

OF=6,OE=3,

tanCDE=tanCFA=,

=

OA=3,

OD=6,

點(diǎn)D(0,6),

設(shè)直線n:y=mx+n,把D(0,6),點(diǎn)A(﹣3,0)代入得:

解得:,

直線n:y=2x+6,

聯(lián)立直線n和拋物線G2得:,

解得:x=3,或x=﹣3(舍去)

此時(shí)y=12,

所以:點(diǎn)B(3,12),

當(dāng)直線n與G2交點(diǎn)在x軸下方時(shí),如圖2:

由題意HLE∽△FLA,此時(shí)有:ELH=FLA=90°,

EHA=LFA

直線m的解析式為,當(dāng)x=0時(shí),y=3,當(dāng)y=0時(shí),x=﹣6,

點(diǎn)E(0,3),點(diǎn)F(﹣6,0),

OF=6,OE=3,

tanEHA=tanLFA=,

=,

OA=3

OH=6,

點(diǎn)H(0,﹣6),

設(shè)直線n:y=mx+n,把D(0,﹣6),點(diǎn)A(﹣3,0)代入得:

解得:,

直線n:y=﹣2x﹣6,

聯(lián)立直線n和拋物線G2得:,

解得:x=﹣1,或x=﹣3(舍去)

此時(shí)y=﹣4,

所以:點(diǎn)B1(﹣1,﹣4),

綜上所述:存在點(diǎn)B,使直線m、n、x軸圍成的三角形和直線m、n、y軸圍成的三角形相似,點(diǎn)B的坐標(biāo)為(3,12)和(﹣1,﹣4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x2時(shí),函數(shù)ykx10與函數(shù)y3x3k的值相等,k的值為( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的兩邊長為3和6,則此等腰三角形的周長為( 。

A. 12或15 B. 12 C. 15 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x(x﹣1)=0的解是(

A.x=0 B.x=1 C.x=0或x=﹣1 D.x=0或x=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】與數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的數(shù)是( )

A.整數(shù) B.有理實(shí)數(shù)數(shù) C.無理數(shù) D.實(shí)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=x+2與雙曲線相交于A,B兩點(diǎn)其中點(diǎn)A的縱坐標(biāo)為3,點(diǎn)B的縱坐標(biāo)為﹣1.

(1)求k的值;

(2)若y1<y2,請你根據(jù)圖象確定x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ab,c是三角形的三邊則代數(shù)式a22abb2c2的值( )

A. 不能確定 B. 大于0

C. 等于0 D. 小于0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求下列各式中的x的值:

(1)(2x-1)2= 25 (2)3(x-4)3= -375

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,AC⊙O的切線,BC⊙O于點(diǎn)E

1)若DAC的中點(diǎn),證明DE⊙O的切線;

2)若OA=,CE=1,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案