【題目】如圖1,在△ABC中,∠B=60°,點M從點B出發(fā)沿射線BC方向,在射線BC上運動.在點M運動的過程中,連結(jié)AM,并以AM為邊在射線BC上方,作等邊△AMN,連結(jié)CN.
(1)當(dāng)∠BAM= °時,AB=2BM;
(2)請?zhí)砑右粋條件: ,使得△ABC為等邊三角形;
①如圖1,當(dāng)△ABC為等邊三角形時,求證:BM=CN;
②如圖2,當(dāng)點M運動到線段BC之外時,其它條件不變,①中結(jié)論BM=CN還成立嗎?請說明理由.
【答案】(1)30;(2)AB=AC;①見解析;②成立
【解析】試題分析:(1)根據(jù)含30°角的直角三角形的性質(zhì)解答即可;
(2)利用等邊三角形的判定解答;
①利用等邊三角形的性質(zhì)和全等三角形的判定證明即可;
②利用等邊三角形的性質(zhì)和全等三角形的判定證明即可.
試題解析:(1)當(dāng)∠BAM=30°時,
∴∠AMB=180°﹣60°﹣30°=90°,
∴AB=2BM;
故答案為:30;
(2)添加一個條件AB=AC,可得△ABC為等邊三角形;
故答案為:AB=AC;
①∵△ABC與△AMN是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,
即∠BAM=∠CAN,
在△BAM與△CAN中,
,
∴△BAM≌△CAN(SAS),
∴BM=CN;
②成立,理由如下;
∵△ABC與△AMN是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAC+∠MAC=∠MAN+∠MAC,
即∠BAM=∠CAN,
在△BAM與△CAN中,
,
∴△BAM≌△CAN(SAS),
∴BM=CN.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,試探究線段BD、AB和AF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)點D在AB的延長線或反向延長線上時,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某職業(yè)高中機電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,學(xué)校布置了綜合實踐活動任務(wù),王濤小組四人負責(zé)調(diào)查本村的500戶農(nóng)民的家庭收入情況,他們隨機調(diào)查了40戶居民家庭的收入情況(收入取整數(shù),單位:元),并制定了頻數(shù)分布表(如圖Ⅰ)和頻數(shù)分布直方圖(如圖Ⅱ).
根據(jù)以上提供的信息,解答下列問題:
(1)補全頻數(shù)分布表;
(2)補全頻數(shù)分布直方圖;
(3)請你估計該村屬于中等收入(不低于1000元小于1600元)的大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=15,點E是AD邊上一點,連接BE,把△ABE沿BE折疊,使點A落在點A′處,點F是CD邊上一點,連接EF,把△DEF沿EF折疊,使點D落在直線EA′上的點D′處,當(dāng)點D′落在BC邊上時,AE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店以4元/千克的價格購進一批水果,由于銷售狀況良好,該店又再次購進同一種水果,第二次進貨價格比第一次每千克便宜了0.5元,所購水果重量恰好是第一次購進水果重量的2倍,這樣該水果店兩次購進水果共花去了2200元.
(1)該水果店兩次分別購買了多少元的水果?
(2)在銷售中,盡管兩次進貨的價格不同,但水果店仍以相同的價格售出,若第一次購進的水果有3%的損耗,第二次購進的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).
(1)上述操作能驗證的等式是 ;(請選擇正確的一個)
A、a2﹣2ab+b2=(a﹣b)2
B、a2﹣b2=(a+b)(a﹣b)
C、a2+ab=a(a+b)
(2)應(yīng)用你從(1)選出的等式,完成下列各題:
①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.
②計算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).
(1)上述操作能驗證的等式是 ;(請選擇正確的一個)
A、a2﹣2ab+b2=(a﹣b)2
B、a2﹣b2=(a+b)(a﹣b)
C、a2+ab=a(a+b)
(2)應(yīng)用你從(1)選出的等式,完成下列各題:
①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.
②計算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC中,∠A=96°,延長BC到D,∠ABC與∠ACD的平分線相交于點A1∠A1BC與∠A1CD的平分線相交于點A2,依此類推,∠A4BC與∠A4CD的平分線相交于點A5,則∠A5的度數(shù)為( )
A. 19.2° B. 8° C. 6° D. 3°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com