【題目】某工廠要新建一個800平方米的長方形場地,且其長、寬的比為5:2.

1)求這個長方形場地的長和寬為多少米?

2)某個正方形場地的周圍有一圈金屬柵欄圍墻,如果把原來面積為900平方米的正方形場地的柵欄圍墻全部利用,來作為新場地的長方形圍墻,柵欄圍墻是否夠用?為什么?(提示:)

【答案】1)長方形場地的長和寬分別為米、米;(2)這些柵欄不夠用

【解析】

1)設(shè)長方形場地長為米,則其寬為米,根據(jù)題意列出方程求解即可.

2)求出新長方形的周長,再跟柵欄的總長度進行比較即可.

(1)設(shè)長方形場地長為米,則其寬為米,

根據(jù)題意,得:

解得: (舍)

,寬

答:長方形場地的長和寬分別為米、米;

2)設(shè)正方形邊長為,則

解得: (舍),

原正方形周長為120米,

新長方形的周長為

,

柵欄不夠用,

答:這些柵欄不夠用.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2+bx+2過點A(﹣2,0),B(2,2),與y軸交于點C.

(1)求拋物線y=ax2+bx+2的函數(shù)表達式;
(2)若點D在拋物線y=ax2+bx+2的對稱軸上,求△ACD的周長的最小值;
(3)在拋物線y=ax2+bx+2的對稱軸上是否存在點P,使△ACP是直角三角形?若存在直接寫出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了 淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng) 天的總成本為 萬元;放養(yǎng) 天的總成本為 萬元(總成本=放養(yǎng)總費用+收購成本).
(1)設(shè)每天的放養(yǎng)費用是 萬元,收購成本為 萬元,求 的值;
(2)設(shè)這批淡水魚放養(yǎng) 天后的質(zhì)量為 ),銷售單價為 元/ .根據(jù)以往經(jīng)驗可知: 的函數(shù)關(guān)系為 的函數(shù)關(guān)系如圖所示.

①分別求出當 時, 的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚放養(yǎng) 天后一次性出售所得利潤為 元,求當 為何值時, 最大?并求出最大值.(利潤=銷售總額-總成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面文字,然后回答問題.

大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),所以的小數(shù)部分我們不可能全部寫出來,由于的整數(shù)部分是1,將 減去它的整數(shù)部分,差就是它的小數(shù)部分,因此的小數(shù)部分可用1表示.

由此我們得到一個真命題:如果x+y,其中x是整數(shù),且0y1,那么x1,y1

請解答下列問題:

1)如果a+b,其中a是整數(shù),且0b1,那么a   b   ;

2)如果﹣c+d,其中c是整數(shù),且0d1,那么c   ,d   

3)已知2+m+n,其中m是整數(shù),且0n1,求|mn|的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y=x2﹣2mx﹣3,下列結(jié)論錯誤的是(
A.它的圖象與x軸有兩個交點
B.方程x2﹣2mx=3的兩根之積為﹣3
C.它的圖象的對稱軸在y軸的右側(cè)
D.x<m時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知平面直角坐標系中,點,滿足

1)求的面積;

2)將線段經(jīng)過水平、豎直方向平移后得到線段,已知直線經(jīng)過點的橫坐標為5

①求線段平移過程中掃過的面積;

②請說明線段的平移方式,并說明理由;

③如圖2,線段上一點,直接寫出之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出:

(1)平面直角坐標系中,若點A(a,2a+1)在一次函數(shù)y=x-1的圖像上,則a的值為___________;

(2)如圖1,平面直角坐標系中,已知A(4,2)、B(-1,1),若∠A=90°,點C在第一象限,且AB=AC,試求出C點坐標;

(3)近幾年在經(jīng)濟、科技等多方面飛速發(fā)展的中國向世界展示了有一個繁華盛世.在政府的引導下,各地也都就本市特點修建了一些具有本地特色的旅游開發(fā)項目.如圖2,某市就其地勢特點,在一塊由三條高速路(分別是x軸和直線AB:、直線AC:y=2x-1)圍成的三角形區(qū)域內(nèi)計劃修建一個三角形的特色旅游小鎮(zhèn).如圖,D(-4,0),DEF的頂點E、F分別在線段AB、AC上,且∠DEF=90°,DE=EF,試求出該旅游小鎮(zhèn)(DEF)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=30°,OP平分∠AOB,PD⊥OBD,PC∥OBOAC,若PC=10,則PD=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,已知點外一點,連接.求的度數(shù).

請補充下面的推理過程:

解:過點,所以_______

又因為°,所以

2)如圖2,已知,借鑒(1)的方法,求的度數(shù);

3)如圖3,已知,,平分平分,,所在的直線交于點,點兩條平行線之間,借鑒(1)的方法,求的度數(shù).

查看答案和解析>>

同步練習冊答案