【題目】為節(jié)約能源,某單位按以下規(guī)定收取每月電費:用電不超過140度,按每度元收費,如果超過140度,超過部分按每度元收費.

若某住戶六月份的用電量是130度,該用戶六月份應繳多少電費?

若該住戶七月份的用電量是200度,該用戶七月份應繳多少電費?

若某住戶十月份的用電量是a度,該用戶十月份應繳多少電費?

【答案】他六月份應交元電費;他七月份應交99元電費;他十月份應交元或元電費.

【解析】

1)根據(jù)應交電費用電量×電價,即可得出;
2)用電量是200>140時,電費就是140度的電費價格是每度0.45元與超過140度的部分的電費即200-140度每度0.60元之間的和;
3)用電量是a度,時,電費是a>140時,電費就是140度的電費價格是每度0.45元與超過140度的部分的電費即a-140度每度0.60元之間的和.

答:他六月份應交元電費.

答:他七月份應交99元電費.

時,

時,

答:他十月份應交元或元電費.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD相交于點O,OE平分∠BOD

1)若∠AOC=70°,∠DOF=90°,求∠EOF的度數(shù);

2)若OF平分∠COE,∠BOF=15°,若設∠AOE=x°

①用含x的代數(shù)式表示∠EOF;

②求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,連接對角線BD,作AE⊥BD于E,CF⊥BD于F,
(1)求證:△AED≌△CFB;
(2)若∠ABC=75°,∠ADB=30°,AE=3,求平行四邊形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9分)如圖,已知點B、EC、F在同一直線上,AB=DE,∠A=∠D,AC∥DF

求證:(1△ABC≌△DEF; (2BE=CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離是5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售的一款空調機每臺的標價是1635元,在一次促銷活動中,按標價的八折銷售,仍可盈利9%.
(1)求這款空調每臺的進價(利潤率= = ).
(2)在這次促銷活動中,商場銷售了這款空調機100臺,問盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ACB和△ECD都是等腰直角三角形,CA=CBCE=CD,ACB的頂點A在△ECD的斜邊DE上.

1)求證:AE2+AD2=2AC2;

2)如圖2,若AE=3,AC=,點FAD的中點,求出CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)將一張長方形紙片按如圖1所示的方式折疊,BC、BD為折痕,求∠CBD的度數(shù);

(2)將一張長方形紙片按如圖2所示的方式折疊,BC、BD為折痕,若∠ABE′=50°,求∠CBD的度數(shù);

(3)將一張長方形紙片按如圖3所示的方式折疊,BCBD為折痕,若∠ABE′=α,請直接寫出∠CBD的度數(shù)(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+a上的三點,則y1 , y2 , y3的大小關系為( )
A.y3>y1>y2
B.y1>y3>y2
C.y3>y2>y1
D.y1>y2>y3

查看答案和解析>>

同步練習冊答案