【題目】有三張正面分別標(biāo)有數(shù)字﹣3,1,3的不透明卡片,它們除數(shù)字外都相同,現(xiàn)將它們背面朝上,洗勻后從三張卡片中隨機(jī)地抽取一張,放回卡片洗勻后,再從三張卡片中隨機(jī)地抽取一張.
(1)試用列表或畫樹狀圖的方法,求兩次抽取的卡片上的數(shù)字之積為負(fù)數(shù)的概率;
(2)求兩次抽取的卡片上的數(shù)字之和為非負(fù)數(shù)的概率.

【答案】
(1)解:畫樹狀圖如下:

由樹狀圖可知,共有9種等可能結(jié)果,其中數(shù)字之積為負(fù)數(shù)的有4種結(jié)果,

∴兩次抽取的卡片上的數(shù)字之積為負(fù)數(shù)的概率為 ;


(2)解:在(1)種所列9種等可能結(jié)果中,數(shù)字之和為非負(fù)數(shù)的有6種,

∴兩次抽取的卡片上的數(shù)字之和為非負(fù)數(shù)的概率為 =


【解析】(1)畫出樹狀圖列出所有等可能結(jié)果,再找到數(shù)字之積為負(fù)數(shù)的結(jié)果數(shù),根據(jù)概率公式可得;(2)根據(jù)(1)中樹狀圖列出數(shù)字之和為非負(fù)數(shù)的結(jié)果數(shù),再根據(jù)概率公式求解可得.
【考點(diǎn)精析】通過靈活運(yùn)用列表法與樹狀圖法,掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用若干個大小相同,棱長為1的小正方體搭成一個幾何體模型,其三視圖如圖所示,則搭成這個幾何體模型所用的小正方體的個數(shù)是( 。

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一元一次方程的解也是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.

例如:方程 的解為 ,不等式組 的解集為 ,因?yàn)?/span> ,所以,稱方程為不等式組的關(guān)聯(lián)方程.

(1)在方程①,中,不等式組 的關(guān)聯(lián)方程是 ;(填序號)

(2)若不等式組的一個關(guān)聯(lián)方程的根是整數(shù),則這個關(guān)聯(lián)方程可以是 ;(寫出一個即可)

(3)若方程都是關(guān)于的不等式組的關(guān)聯(lián)方程,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC=45°,以AB為直徑的⊙O交BC于點(diǎn)D,若BC=4 ,則圖中陰影部分的面積為(
A.π+1
B.π+2
C.2π+2
D.4π+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)2x

2)先化簡,再求值:2b2+a+b)(abab2,其中a=3,b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)DE分別在邊BCAC上,且DE∥AB,過點(diǎn)EEF⊥DE,交BC的延長線于點(diǎn)F.

1)求∠F的度數(shù);

2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,EF與AB、CD分別相交于點(diǎn)E、F,EP⊥EF,與∠EFD的平分線FP相交于點(diǎn)P,且∠BEP=50°,則∠EPF=( )度.
A.70
B.65
C.60
D.55

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)Ax軸負(fù)半軸上一點(diǎn),點(diǎn)Bx軸正半軸上一點(diǎn),,,其中a、b滿足關(guān)系式:

______,______,的面積為______;

如圖2,石于點(diǎn)C,點(diǎn)P是線段OC上一點(diǎn),連接BP,延長BPAC于點(diǎn)當(dāng)時,求證:BP平分;提示:三角形三個內(nèi)角和等于

如圖3,若,點(diǎn)E是點(diǎn)A與點(diǎn)B之間上一點(diǎn)連接CE,且CB平分有什么數(shù)量關(guān)系?請寫出它們之間的數(shù)量關(guān)系并請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿射線AC的方向勻速平移得到△PNM,速度為1cm/s,同時,點(diǎn)Q從點(diǎn)C出發(fā),沿射線CB方向勻速運(yùn)動,速度為1cm/s,當(dāng)△PNM停止平移時,點(diǎn)Q也停止運(yùn)動,如圖2所示,設(shè)運(yùn)動時間為t(s)(0<t<4).

(1)當(dāng)t為何值時,PQ∥MN?
(2)設(shè)△QMC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使得PQ=QM,若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案