精英家教網 > 初中數學 > 題目詳情

把直角三角形的兩條直角邊同時擴大到原來的2倍,則其斜邊擴大到原來的

[  ]

A.2倍
B.4倍
C.
D.3倍
答案:A
解析:

擴大前后兩個直角三角形相似,則其對應邊成比例,機斜邊也應擴大到原來的2倍,則選A


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

某課題學習小組在一次活動中對三角形的內接正方形的有關問題進行了探討:

  定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內接正方形.

  結論:在探討過程中,有三位同學得出如下結果:

       甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、____個、_____個大小不同的內接正方形.

       乙同學:在直角三角形中,兩個頂點都在斜邊上的內接正方形的面積較大.

       丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內接正方形的面積反而較小.

任務:(1)填充甲同學結論中的數據;

       (2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;

       (3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明。

(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結論,但在證明正確的情況下扣1分).

 

查看答案和解析>>

科目:初中數學 來源: 題型:

某課題學習小組在一次活動中對三角形的內接正方形的有關問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內接正方形.
結論:在探討過程中,有三位同學得出如下結果:
甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內接正方形.
乙同學:在直角三角形中,兩個頂點都在斜邊上的內接正方形的面積較大.
丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內接正方形的面積反而較小.
任務:(1)填充甲同學結論中的數據;
(2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明
(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結論,但在證明正確的情況下扣1分).

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業(yè)升學考試(江西卷)數學 題型:解答題

某課題學習小組在一次活動中對三角形的內接正方形的有關問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內接正方形.
結論:在探討過程中,有三位同學得出如下結果:
甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內接正方形.
乙同學:在直角三角形中,兩個頂點都在斜邊上的內接正方形的面積較大.
丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內接正方形的面積反而較小.
任務:(1)填充甲同學結論中的數據;
(2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明
(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內接正方形的邊長分別為.若你對本小題證明有困難,可直接用”這個結論,但在證明正確的情況下扣1分).

查看答案和解析>>

科目:初中數學 來源:2011年江蘇省江陰市九年級上學期期中考試數學卷 題型:解答題

某課題學習小組在一次活動中對三角形的內接正方形的有關問題進行了探討:

  定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內接正方形.

  結論:在探討過程中,有三位同學得出如下結果:

        甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、____個、_____個大小不同的內接正方形.

        乙同學:在直角三角形中,兩個頂點都在斜邊上的內接正方形的面積較大.

        丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內接正方形的面積反而較小.

任務:(1)填充甲同學結論中的數據;

       (2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;

       (3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明。

(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結論,但在證明正確的情況下扣1分).

 

查看答案和解析>>

科目:初中數學 來源: 題型:

某課題學習小組在一次活動中對三角形的內接正方形的有關問題進行了探討:

  定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內接正方形.

  結論:在探討過程中,有三位同學得出如下結果:

        甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內接正方形.

        乙同學:在直角三角形中,兩個頂點都在斜邊上的內接正方形的面積較大.

        丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內接正方形的面積反而較小.

任務:(1)填充甲同學結論中的數據;

     (2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;

     (3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明

(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結論,但在證明正確的情況下扣1分).

查看答案和解析>>

同步練習冊答案