【題目】如圖(1)是某公園里的一種健身器材,其側(cè)面示意圖如圖(2)所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求點D到地面的高度是多少?

【答案】D到地面的高度為(10+cm

【解析】

AAFBC,垂足為F,過點DDHAF,垂足為H.先得出AF的長,再利用相似三角形的判定與性質(zhì)得出AH的長即可得出答案.

解:過AAFBC,垂足為F,過點DDHAF,垂足為H

AFBC

BF=FC=BC=40cm

根據(jù)勾股定理,得AF=cm),

∵∠DHA=DAC=AFC=90°,

∴∠DAH+FAC=90°,∠C+FAC=90°,

∴∠DAH=C

∴△DAH∽△ACF,

,

AH=10cm.

HF=10+cm ,

答:D到地面的高度為(10+cm

故答案為:D到地面的高度為(10+cm.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCO的頂點B、C在第二象限,點A(3,0),反比例函數(shù)y(k0)圖象經(jīng)過點CAB邊的中點D,若∠Bα,則k的值為(  )

A. 4tanαB. 2sinαC. 4cosαD. 2tan

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Qy軸上的一個動點.

1)請直接寫出a,k,b的值及關(guān)于x的不等式ax2kx2的解集;

2)當點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標;

3)是否存在以P,Q,A,B為頂點的四邊形是平行四邊形?若存在,請直接寫出PQ的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在港口A的南偏東37°方向的海面上,有一巡邏艇B,AB相距20海里,這時在巡邏艇的正北方向及港口A的北偏東67°方向上,有一漁船C發(fā)生故障.得知這一情況后,巡邏艇以25海里/小時的速度前往救援,問巡邏艇能否在1小時內(nèi)到達漁船C處?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈cos67°≈,tan67°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=30°,將△ABC繞點C逆時針旋轉(zhuǎn)得到△DEC,點A的對應點D恰好落在線段CB的延長線上,連接AD,若∠ADE=90°,則∠BAD=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知:△ABD∽△ACE,∠ABD=ACE=90°,連接DE,ODE的中點。

1)連接OC,OB 求證:OB=OC;

2)將△ACE繞頂點A逆時針旋轉(zhuǎn)到圖2的位置,過點EEMAD交射線AB于點M,交射線AC于點N,連接DM,BC. DE的中點O恰好在AB上。

①求證:△ADM∽△AEN

②求證:BCAD

③若AC=BD=3,AB=4,ACE繞頂點A旋轉(zhuǎn)的過程中,是否存在四邊形ADME矩形的情況?如果存在,直接寫出此時BC的值,若不存在說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A1,0)、C(﹣23)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標;

3)在對稱軸上是否存在一點M,使ANM的周長最。舸嬖冢埱蟪M點的坐標和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c的部分圖象,A10),B03).

1)求拋物線的解析式;

2)若拋物線與x軸的另一個交點是C點,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線:y=﹣xx3)(0x3),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;…如此進行下去,直至得C17.若P50,m)在第17段拋物線C17上,則m_____

查看答案和解析>>

同步練習冊答案