【題目】如圖,小明用自制的直角三角形紙板DEF測(cè)量樹AB的高度,他調(diào)整自己的位置,使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上,已知紙板的兩條直角邊DE=40 cm,EF=20 cm,測(cè)得邊DF離地面的高度AC=1.5 m, CD=10 m,請(qǐng)你幫小明求下樹的高度。

【答案】6.5米.

【解析】試題分析:利用直角三角形DEF和直角三角形BCD相似求得BC的長(zhǎng)后加上小明同學(xué)的身高即可求得樹高AB

解:∵∠DEF=∠BCD=90°∠D=∠D

∴△DEF∽△DCB

=

∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5mCD=10m,

=

∴BC=5米,

∴AB=AC+BC=1.5+5=6.5

樹高為6.5米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長(zhǎng)AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長(zhǎng)為(

A.100米 B.99米 C.98米 D.74米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(0,b)(b>0),點(diǎn)P是直線AB上位于第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PCx軸于點(diǎn)C,記點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)為Q,設(shè)點(diǎn)P的橫坐標(biāo)為a

(1)當(dāng)b=3時(shí),

求直線AB的解析式;

若QO=QA,求P點(diǎn)的坐標(biāo)

(2)是否同時(shí)存在a、b,使得QAC是等腰直角三角形?若存在,求出所有滿足條件的a、b的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(a,1)與點(diǎn)A(5,b)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則實(shí)數(shù)a、b的值是(

Aa=5,b=1 Ba=-5,b=1

Ca=5,b=-1 Da=-5,b=-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一條公路的轉(zhuǎn)彎處是一段圓。).

1)用直尺和圓規(guī)作出所在圓的圓心O;(要求保留作圖痕跡,不寫作法)

2)若的中點(diǎn)C到弦AB的距離為20m,AB=80m,求所在圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,3)關(guān)于y軸對(duì)稱的點(diǎn)A的坐標(biāo)是(

A.(-2,6) B.(2,3) C.(-2,-3) D.(2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列每組數(shù)分別表示三根木棒的長(zhǎng)度,將它們首尾連接后,能擺成三角形的一組是(

A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OM平分AOB,MCOB,MDOB于D,若OMD=75°,OC=8,則MD的長(zhǎng)為( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB=90°,在AOB的內(nèi)部有一條射線OC

1)畫射線ODOC

2)寫出此時(shí)AODBOC的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案