【題目】若將點(diǎn)A(1,3)向左平移2個(gè)單位,再向下平移4個(gè)單位得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為( 。
A.(﹣2,﹣1)
B.(﹣1,0)
C.(﹣1,﹣1)
D.(﹣2,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把命題“角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等”改寫成“如果…,那么…、”的形式:如果_____,那么_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線圖象經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)若C(m,m﹣1)是拋物線上位于第一象限內(nèi)的點(diǎn),D是線段AB上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)A、B重合),過點(diǎn)D分別作DE∥BC交AC于E,DF∥AC交BC于F.
①求證:四邊形DECF是矩形;
②試探究:在點(diǎn)D運(yùn)動(dòng)過程中,DE、DF、CF的長(zhǎng)度之和是否發(fā)生變化?若不變,求出它的值;若變化,試說明變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF.給出下列結(jié)論:①∠1=∠2;②BE=CF;
③△ACN≌△ABM;④CD=DN.其中正確的是(將正確的結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:(1)如圖①,AB為⊙O的弦,點(diǎn)C是⊙O上的一點(diǎn),在直線AB上方找一個(gè)點(diǎn)D,使得∠ADB=∠ACB,畫出∠ADB;
(2)如圖②,AB 是⊙O的弦,點(diǎn)C是⊙O上的一個(gè)點(diǎn),在過點(diǎn)C的直線l上找一點(diǎn)P,使得∠APB<∠ACB,畫出∠APB;
(3)如圖③,已知足球門寬AB約為米,一球員從距B點(diǎn)米的C點(diǎn)(點(diǎn)A、B、C均在球場(chǎng)的底線上),沿與AC成45°的CD方向帶球.試問,該球員能否在射線CD上找一點(diǎn)P,使得點(diǎn)P最佳射門點(diǎn)(即∠APB最大)?若能找到,求出這時(shí)點(diǎn)P與點(diǎn)C的距離;若找不到,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O為直線AB上一點(diǎn),在直線AB上側(cè)任作一個(gè)∠COD,使得∠COD=90°.
(1)如圖1,過點(diǎn)O作射線OE,當(dāng)OE恰好為∠AOD的角平分線時(shí),請(qǐng)直接寫出∠BOD與∠COE之間的倍數(shù)關(guān)系,即∠BOD= ______ ∠COE(填一個(gè)數(shù)字);
(2)如圖2,過點(diǎn)O作射線OE,當(dāng)OC恰好為∠AOE的角平分線時(shí),另作射線OF,使得OF平分∠COD,求∠FOB+∠EOC的度數(shù);
(3)在(2)的條件下,若∠EOC=3∠EOF,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=7,點(diǎn)E是AD上一個(gè)動(dòng)點(diǎn),把△BAE沿BE向矩形內(nèi)部折疊,當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)A1恰好落在∠BCD 的平分線上時(shí),CA1的長(zhǎng)為( )
A、3或4 B、4或3 C、3或4 D、3或4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com