【題目】已知4x2mx+25是完全平方式,則常數(shù)m的值為(  )

A.10B.±10C.20D.±20

【答案】D

【解析】

利用完全平方式的結(jié)構(gòu)特征判斷即可確定出m的值.

4x2mx+25是完全平方式,

∴﹣m=±2×2×5=±20,即m±20

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠A=100°,∠C=70°,點(diǎn)M、N分別在AB、BC上,將△BMN沿MN翻折,得△FMN.若MF∥AD,F(xiàn)N∥DC,則∠B的度數(shù)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情景:

如圖1,AB//CD,PAB=130°,PCD=120°,求∠APC的度數(shù).

小明的思路是:

過(guò)點(diǎn)PPE//AB,

∴∠PAB+APE=180°.

∵∠PAB=130°,∴∠APE=50°

AB//CD,PE//AB,PE//CD,

∴∠PCD+CPE=180°.

∵∠PCD=120°,∴∠CPE=60°

∴∠APC=APE+CPE=110°.

問(wèn)題遷移:

如果ABCD平行關(guān)系不變,動(dòng)點(diǎn)P在直線AB、CD所夾區(qū)域內(nèi)部運(yùn)動(dòng)時(shí),∠PAB,PCD的度數(shù)會(huì)跟著發(fā)生變化.

(1)如圖3,當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到直線AC右側(cè)時(shí),請(qǐng)寫出∠PAB,PCD和∠APC之間的數(shù)量關(guān)系?并說(shuō)明理由.

(2)如圖4,AQ,CQ分別平分∠PAB,PCD,那么∠AQC和角∠APC有怎擇的數(shù)量關(guān)系?

(3)如圖5,點(diǎn)P在直線AC的左側(cè)時(shí),AQ,CQ仍然平分∠PAB,PCD,請(qǐng)直接寫出AQC和角∠APC的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同慶中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從軍躍體育用品商店一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買3個(gè)足球和2個(gè)籃球共需310元,購(gòu)買2個(gè)足球和5個(gè)籃球共需500元.

(1)購(gòu)買一個(gè)足球、一個(gè)籃球各需多少元?

(2)根據(jù)同慶中學(xué)的實(shí)際情況,需從軍躍體育用品商店一次性購(gòu)買足球和籃球共96個(gè),要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)5720元,這所中學(xué)最多可以購(gòu)買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.矩形紙片ABCD中,已知AD=8,折疊紙片使AB邊與對(duì)角線AC重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3.則AB的長(zhǎng)為(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,BD平分∠ABCAC于點(diǎn)D,AE∥BDCB的延長(zhǎng)線于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為( 。

A. 40° B. 45° C. 60° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列語(yǔ)句中,命題有_______個(gè).

①對(duì)頂角相等;②內(nèi)錯(cuò)角相等;③∠1>∠2嗎?④若a∥b,bc,則ac;⑤兩點(diǎn)確定一條直線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織九年級(jí)學(xué)生參加漢字聽寫大賽,并隨機(jī)抽取部分學(xué)生成績(jī)作為樣本進(jìn)行分析,繪制成如下的統(tǒng)計(jì)表:

請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:

(1)a=__________,b=__________;

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(3)已知該年級(jí)有400名學(xué)生參加這次比賽,若成績(jī)?cè)?/span>90分以上(含90分)的為優(yōu),估計(jì)該年級(jí)成績(jī)?yōu)閮?yōu)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正比例函數(shù)y1=k1x與反比例函數(shù)y2= 相交于A、B點(diǎn).已知點(diǎn)A的坐標(biāo)為A(4,n),BD⊥x軸于點(diǎn)D,且SBDO=4.過(guò)點(diǎn)A的一次函數(shù)y3=k3x+b與反比例函數(shù)的圖象交于另一點(diǎn)C,與x軸交于點(diǎn)E(5,0).
(1)求正比例函數(shù)y1、反比例函數(shù)y2和一次函數(shù)y3的解析式;
(2)結(jié)合圖象,求出當(dāng)k3x+b> >k1x時(shí)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案