【題目】如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,弦BD=BA,AC=13,BC=5,BE⊥DC交DC的延長線于點E.
(1)求證:CB是∠ECA的角平分線;
(2)求DE的長;
(3)求證:BE是⊙O的切線.
【答案】(1)證明見解析;(2).(3)證明見解析.
【解析】
試題分析:(1)根據(jù)BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出結(jié)論;
(2)判斷△BED∽△CBA,利用對應(yīng)邊成比例的性質(zhì)可求出DE的長度.
(3)連接OB,OD,證明△ABO≌△DBO,推出OB∥DE,繼而判斷BE⊥OB,可得出結(jié)論.
試題解析:(1)∵BD=BA,
∴∠BDA=∠BAD,
∵∠BCA=∠BDA,
∴∠BCA=∠BAD.
∴CB是∠ECA的角平分線;
(2)∵∠BDE=∠CAB且∠BED=∠CBA=90°,
∴△BED∽△CBA,
∴,
由勾股定理易求AB=12.
即,
解得:DE=.
(3)連結(jié)OB,OD,
在△ABO和△DBO中,
,
∴△ABO≌△DBO(SSS),
∴∠DBO=∠ABO,
∵∠ABO=∠OAB=∠BDC,
∴∠DBO=∠BDC,
∴OB∥ED,
∵BE⊥ED,
∴EB⊥BO,
∴BE是⊙O的切線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】幾何探究題
(1)發(fā)現(xiàn):在平面內(nèi),若BC=a,AC=b,其中a>b.
當(dāng)點A在線段BC上時(如圖1),線段AB的長取得最小值,最小值為 ;
當(dāng)點A在線段BC延長線上時(如圖2),線段AB的長取得最大值,最大值為 .
(2)應(yīng)用:點A為線段BC外一動點,如圖3,分別以AB、AC為邊,作等邊△ABD和等邊△ACE,連接CD、BE.
①證明:CD=BE;
②若BC=3,AC=1,則線段CD長度的最大值為 .
(3)拓展:如圖4,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(5,0),點P為線AB外一動點,且PA=2,PM=PB,∠BPM=90°.請直接寫出線段AM長的最大值及此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知有兩人分別騎自行車和摩托車沿著相同的路線從甲地到乙地去,下圖反映的是這兩個人行駛過程中路程s(km)和時間t(h)的關(guān)系,請根據(jù)圖象回答下列問題:
(1)甲地與乙地相距 千米.
(2)摩托車比自行車晚出發(fā) 小時.
(3)求摩托車行駛的路程s與時間t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸,M為它的頂點
(1)求拋物線的函數(shù)關(guān)系式;
(2)求△MCB的面積;
(3)設(shè)點P是直線l上的一個動點,當(dāng)PA+PC最小時,求最小值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人先后從公園大門出發(fā),沿綠道向碼頭步行,乙先到碼頭并在原地等甲到達(dá).圖1是他們行走的路程y(m)與甲出發(fā)的時間x(min)之間的函數(shù)圖象.
(1)求線段AC對應(yīng)的函數(shù)表達(dá)式;
(2)寫出點B的坐標(biāo)和它的實際意義;
(3)設(shè)d(m)表示甲、乙之間的距離,在圖2中畫出d與x之間的函數(shù)圖象(標(biāo)注必要數(shù)據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大潤發(fā)超市以每件30元的價格購進一種商品,試銷中發(fā)現(xiàn)每天的銷售量(件)與每件的銷售價(元)之間滿足一次函數(shù).
(1)、寫出超市每天的銷售利潤(元)與每件的銷售價x(元)之間的函數(shù)關(guān)系式;
(2)、如果超市每天想要獲得銷售利潤420元,則每件商品的銷售價應(yīng)定為多少元?
(3)、如果超市要想獲得最大利潤,每件商品的銷售價定為多少元最合適?最大銷售利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲學(xué)校到乙學(xué)校有A1、A2、A3三條線路,從乙學(xué)校到丙學(xué)校有B1、B2二條線路.
(1)利用樹狀圖或列表的方法表示從甲學(xué)校到丙學(xué)校的線路中所有可能出現(xiàn)的結(jié)果;
(2)小張任意走了一條從甲學(xué)校到丙學(xué)校的線路,求小張恰好經(jīng)過了B1線路的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在6×8的網(wǎng)格中,每個小正方形的邊長均為1,點O和△ABC的頂點均為小正方形的頂點.
(1)在圖中△ABC的內(nèi)部作△A′B′C′,使△A′B′C′和△ABC位似,且位似中心為點O,位似比為1:2;
(2)連接(1)中的AA′,則線段AA′的長度是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點E和點F分別在直線AB和CD上,EL和FG分別平分∠BEF和∠EFC,EL∥FG.
(1)求證:AB∥CD;
(2)如圖,點M為FD上一點,∠BEM,∠EFD的角平分線EH,FH相交于點H,若∠H=∠FEM+15°,延長HE交FG于G點,求∠G的度數(shù);
(3)如圖,點N在直線AB和直線CD之間,且EN⊥FN,點P為直線AB上的點,若∠EPF,∠PFN的角平分級交于點Q,設(shè)∠BEN=α,直接寫出∠PQF的大小為(用含α的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com