【題目】某校興趣小組想測量一座大樓AB的高度.如圖6,大樓前有一段斜坡BC,已知BC的長為12米,它的坡度i=1: .在離C點40米的D處,用測角儀測得大樓頂端A的仰角為37°,測角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結果精確到0.1米) (參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73.)

【答案】解:延長AB交直線DC于點F,過點E作EH⊥AF,垂足為點H. ∵在Rt△BCF中, =i=1: ,
∴設BF=k,則CF= ,BC=2k.
又∵BC=12,
∴k=6,
∴BF=6,CF=
∵DF=DC+CF,
∴DF=40+6
∵在Rt△AEH中,tan∠AEH= ,
∴AH=tan37°×(40+6 )≈37.8(米),
∵BH=BF﹣FH,
∴BH=6﹣1.5=4.5.
∵AB=AH﹣HB,
∴AB=37.8﹣4.5=33.3.
答:大樓AB的高度約為33.3米.

【解析】延長AB交直線DC于點F,過點E作EH⊥AF,垂足為點H,在Rt△BCF中利用坡度的定義求得CF的長,則DF即可求得,然后在直角△AEH中利用三角函數(shù)求得AF的長,進而求得AB的長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】從甲市到乙市乘坐高速列車的路程為180千米,乘坐普通列車的路程為240千米.高速列車的平均速度是普通列車的平均速度的3倍.高速列車的乘車時間比普通列車的乘車時間縮短了2小時.高速列車的平均速度是每小時多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點F為雙曲線C: =1(a>0,b>0)的右焦點,F(xiàn)關于直線y= x的對稱點在C上,則C的漸近線方程為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,cosA= ,BE,CF分別是AC,AB邊上的高,聯(lián)結EF,那么△AEF和△ABC的周長比為(
A.1:2
B.1:3
C.1:4
D.1:9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,AB=5,聯(lián)結BD,sin∠ABD= .點P是射線BC上的一個動點(點P不與點B重合),聯(lián)結AP,與對角線BD相交于點E,聯(lián)結EC.

(1)求證:AE=CE;
(2)當點P在線段BC上時,設BP=x,△PEC的面積為y,求y關于x的函數(shù)解析式,并寫出它的定義域;
(3)當點P在線段BC的延長線上時,若△PEC是直角三角形,求線段BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DE∥BC,且過△ABC的重心,分別與AB,AC交于點D,E,點P是線段DE上一點,CP的延長線交AB于點Q,如果 = ,那么SDPQ:SCPE的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年3月完工的上海中心大廈是一座超高層地標式摩天大樓,其高度僅次于世界排名第一的阿聯(lián)酋迪拜大廈,某人從距離地面高度263米的東方明珠球體觀光層測得上海中心大廈頂部的仰角是22.3°.已知東方明珠與上海中心大廈的水平距離約為900米,那么上海中心大廈的高度約為米(精確到1米).(參考數(shù)據(jù):sin22.3°≈0.38,cos22.3°≈0.93.tan22.3°≈0.41)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)上部分點的橫坐標x與縱坐標y的對應值如下表:

x

﹣1

0

2

3

4

y

5

2

2

5

10


(1)根據(jù)上表填空: ①這個拋物線的對稱軸是 , 拋物線一定會經過點(﹣2,);
②拋物線在對稱軸右側部分是(填“上升”或“下降”);
(2)如果將這個拋物線y=ax2+bx+c向上平移使它經過點(0,5),求平移后的拋物線表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,A、B是切點,點C是劣弧AB上的一個動點,若∠ACB=110°,則∠P的度數(shù)是(
A.55°
B.30°
C.35°
D.40°

查看答案和解析>>

同步練習冊答案