【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質量分為5級:1級質量為優(yōu);2級質量為良;3級質量為輕度污染;4級質量為中度污染;5級質量為重度污染.某城市隨機抽取了一年中某些天的空氣質量檢測結果,并整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據圖中信息,解答下列各題:
(1)本次調查共抽取了天的空氣質量檢測結果進行統(tǒng)計;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中3級空氣質量所對應的圓心角為°;
(4)如果空氣污染達到中度污染或者以上,將不適宜進行戶外活動,根據目前的統(tǒng)計,請你估計該年該城市只有多少天適宜戶外活動.(一年天數按365天計)
【答案】
(1)200
(2)是5級的天數是50﹣3﹣7﹣10﹣24=6(天),
;
(3)72
(4)估計該年該城市適宜戶外活動的天數是 ×365=146(天).
答:估計該年該城市適宜戶外活動的天數是146天。
【解析】解:(1)抽查的總天數是24÷48%=50(天), 故答案是:50;
⑶扇形統(tǒng)計圖中3級空氣質量所對應的圓心角為 ×360=72°,
故答案是:72;
(1)根據4級的天數是24天,所占的百分比是48%,據此求得調查的總天數;(2)利用總天數減去其它組的天數即可求得5級的天數,從而補全直方圖;(3)用360°乘以對應的百分比即可求得對應的圓心角的度數;(4)利用365乘以對應的比例即可求得.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D在AC邊上,BD=CD,E在BC邊上,AE=AB,過點E作EF⊥BC,交AC于F.若AD=5,CE=8,則EF的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(3,0).C(0,3),點M是拋物線的頂點.
(1)求二次函數的關系式;
(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說明理由;
(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某食品廠“端午節(jié)”期間,為了解市民對肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)四種不同口味粽子的喜愛情況,對某居民區(qū)進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整). 請根據以上信息回答:
(1)本次參加抽樣調查的居民有多少人?
(2)將不完整的條形圖補充完整.
(3)若居民區(qū)有6000人,請估計愛吃C粽的人數?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD、AEFG均為正方形,其中E在BC上,且B、E兩點不重合,并連接BG.根據圖中標示的角判斷下列∠1、∠2、∠3、∠4的大小關系何者正確?( )
A.∠1<∠2
B.∠1>∠2
C.∠3<∠4
D.∠3>∠4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將OA=6,AB=4的矩形OABC放置在平面直角坐標系中,動點M、N以每秒1個單位的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.
(1)點B的坐標為;用含t的式子表示點P的坐標為;
(2)記△OMP的面積為S,求S與t的函數關系式(0<t<6),并求當t為何值時,S有最大值?
(3)試探究:在上述運動過程中,是否存在點T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC的 ?若存在,求出點T的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有6個質地和大小均相同的球,每個球只標有一個數字,將標有3,4,5的三個球放入甲箱,標有5,6,7的三個球放入乙箱中.
(1)小宇從甲箱中隨機摸出一個球,則“摸出標有數字是5的球”的概率是;
(2)小宇從甲箱中,小靜從乙箱中各自隨機摸出一個球,若小宇所摸球上的數字比小靜所摸球上的數字小于1,則稱小宇“屢勝一籌”,請你用列表法(或畫樹狀圖),求小宇“屢勝一籌”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,C,E是直線l兩側的點,以C為圓心,CE長為半徑畫弧交l于A,B兩點,又分別以A,B為圓心,大于 AB的長為半徑畫弧,兩弧交于點D,連接CA,CB,CD,下列結論不一定正確的是( )
A.CD⊥l
B.點A,B關于直線CD對稱
C.點C,D關于直線l對稱
D.CD平分∠ACB
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點O在AB上,經過點A的⊙O與BC相切于點D,與AC,AB分別相交于點E,F(xiàn),連接AD與EF相交于點G.
(1)求證:AD平分∠CAB;
(2)若OH⊥AD于點H,F(xiàn)H平分∠AFE,DG=1.
①試判斷DF與DH的數量關系,并說明理由;
②求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com