【題目】如圖,在矩形ABCD中,E是邊AD上的一點(diǎn),將△CDE沿CE折疊得到△CFE,點(diǎn)F恰好落在邊AB上.
(1)證明:△AEF∽△BFC.
(2)若AB=,BC=1,作線段CE的中垂線,交AB于點(diǎn)P,交CD于點(diǎn)Q,連結(jié)PE,PC.
①求線段DQ的長.
②試判斷△PCE的形狀,并說明理由.
【答案】(1)詳見解析;(2)2-;(3)等腰直角三角形.
【解析】
(1)根據(jù)折疊的性質(zhì)知,從而得出,轉(zhuǎn)化得到相似;
(2)連接EQ,根據(jù)AB=,BC=1計(jì)算出BF的長度,從而判斷都是等腰直角三角形,算出AF、DE的長度,再根據(jù)PQ是CE的垂直平分線得出EQ=CQ,設(shè),則,解直角三角形算出x即可;
(3)設(shè),則,根據(jù)利用勾股定理建立等量關(guān)系解出再證明全等即可.
解:(1)∵將△CDE沿CE折疊得到△CFE
∴
∴
又∵
∴
∴△AEF∽△BFC
(2)①連接EQ,PQ是CE的中垂線,如圖:
∵AB=,BC=1,將△CDE沿CE折疊得到△CFE,四邊形ABCD是矩形
∴
∴都是等腰直角三角形
∴
設(shè),則,在直角三角形DEQ中:
,解得:
故DQ的長為;
②設(shè),則,PQ是CE的中垂線
∴
∴即
解得:
∴
又∵
∴△APE≌△BCP
∴即
∴△PCE是等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y=x2﹣2mx﹣3,有下列說法:
①它的圖象與x軸有兩個(gè)公共點(diǎn);
②如果當(dāng)x≤1時(shí)y隨x的增大而減小,則m=1;
③如果將它的圖象向左平移3個(gè)單位后過原點(diǎn),則m=﹣1;
④如果當(dāng)x=4時(shí)的函數(shù)值與x=2008時(shí)的函數(shù)值相等,則當(dāng)x=2012時(shí)的函數(shù)值為﹣3.
其中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是AB邊上一點(diǎn),以BD為直徑的⊙O與邊AC相切于點(diǎn)E,連接DE并延長DE交BC的延長線于點(diǎn)F.
(1)求證:BD=BF;
(2)填空:
①若⊙O的半徑為5,tanB=,則CF= ;
②若⊙O與BF相交于點(diǎn)H,當(dāng)∠B的度數(shù)為 時(shí),四邊形OBHE為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖場為了響應(yīng)黨中央的扶貧政策,今年起采用“場內(nèi)+農(nóng)戶”養(yǎng)殖模式,同時(shí)加強(qiáng)對蛋雞的科學(xué)管理,蛋雞的產(chǎn)蛋率不斷提高,三月份和五月份的產(chǎn)蛋量分別是2.5萬kg與3.6萬kg,現(xiàn)假定該養(yǎng)殖場蛋雞產(chǎn)蛋量的月增長率相同.
(1)求該養(yǎng)殖場蛋雞產(chǎn)蛋量的月平均增長率;
(2)假定當(dāng)月產(chǎn)的雞蛋當(dāng)月在各銷售點(diǎn)全部銷售出去,且每個(gè)銷售點(diǎn)每月平均銷售量最多為0.32萬kg.如果要完成六月份的雞蛋銷售任務(wù),那么該養(yǎng)殖場在五月份已有的銷售點(diǎn)的基礎(chǔ)上至少再增加多少個(gè)銷售點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解游客對某景區(qū)的滿意度,特對游客采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查的結(jié)果分為A,B,C,D四類,其含意依次表示為“非常滿意”、“比較滿意”、“基本滿意”和“不太滿意”,劃分類別后的數(shù)據(jù)整理如表1(不完整).
(1)求表中的數(shù)據(jù)a和b.
(2)如果根據(jù)表中頻數(shù)畫扇形統(tǒng)計(jì)圖,那么類別為B的頻數(shù)所對應(yīng)的扇形圓心角是幾度?
(3)已知該景區(qū)每日游客限流3000名,估計(jì)一天的游客中類別C的游客人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一種推磨工具模型,圖2是它的示意圖,已知AB⊥PQ,AP=AQ=3dm,AB=12dm,點(diǎn)A在中軸線l上運(yùn)動(dòng),點(diǎn)B在以O為圓心,OB長為半徑的圓上運(yùn)動(dòng),且OB=4dm.
(1)如圖3,當(dāng)點(diǎn)B按逆時(shí)針方向運(yùn)動(dòng)到B′時(shí),A′B′與⊙O相切,則AA′=__dm.
(2)在點(diǎn)B的運(yùn)動(dòng)過程中,點(diǎn)P與點(diǎn)O之間的最短距離為__dm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,以點(diǎn)B為圓心,適當(dāng)長為半徑畫弧交邊于D,E兩點(diǎn)(按照A,D,E,C依次排列,且D、E不重合).過D、E分別作AB和BC的垂線段交于F、G兩點(diǎn),如果線段DF=x,EG=y,則x、y的關(guān)系式為( )
A.20x-15y=B.20x-15y=
C.15x-20y=D.15x-20y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=的圖像與軸的一個(gè)交點(diǎn)為A(-1,0),另一個(gè)交點(diǎn)為B,與軸交于點(diǎn)C(0,﹣3),頂點(diǎn)為D.
(1)求二次函數(shù)的解析式和點(diǎn)D的坐標(biāo);
(2)若點(diǎn)M是拋物線在軸下方圖像上的一動(dòng)點(diǎn),過點(diǎn)M作MN∥軸交線段BC于點(diǎn)N,當(dāng)MN取最大值時(shí),點(diǎn)M 的坐標(biāo);
(3)將該拋物線向上或向下平移,使得新拋物線的頂點(diǎn)D落在x軸上,原拋物線上一點(diǎn)P平移后的對應(yīng)點(diǎn)為Q,如果∠OQP=∠OPQ,試求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形和正方形中,點(diǎn)在上,,,是的中點(diǎn),與交于點(diǎn)0.則的長為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com