解:(1)∵△ABE是等邊三角形, ∴BA=BE,∠ABE=60°, ∵∠MBN=60°, ∴∠MBN-∠ABN=∠ABE-∠ABN, 即∠BMA=∠NBE, 又∵M(jìn)B=NB, ∴△AMB≌△ENB(SAS); | |
(2)①當(dāng)M點(diǎn)落在BD的中點(diǎn)時(shí),AM+CM的值最。 ②如圖,連接CE,當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),AM+BM+CM的值最小, 理由如下:連接MN, 由(1)知,△AMB≌△ENB, ∴AM=EN, ∵∠MBN=60°,MB=NB, ∴△BMN是等邊三角形, ∴BM=MN, ∴AM+BM+CM=EN+MN+CM, 根據(jù)“兩點(diǎn)之間線段最短”,得EN+MN+CM=EC最短 ∴當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),AM+BM+CM的值最小,即等于EC的長(zhǎng); | |
(3)過(guò)E點(diǎn)作EF⊥BC交CB的延長(zhǎng)線于F, ∴∠EBF=90°-60°=30°, 設(shè)正方形的邊長(zhǎng)為x,則BF=x,EF=, 在Rt△EFC中, ∵EF2+FC2=EC2, ∴()2+(x+x)2=, 解得,x=(舍去負(fù)值), ∴正方形的邊長(zhǎng)為。 | |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com