(1)由△ABC、△APD和△APE都是等邊三角形可得邊角的相等關(guān)系,從而用ASA證明。
(2)①由△BPM∽△CAP,根據(jù)對應(yīng)邊成比例得等式,解方程即可。
②應(yīng)用全等三角形的判定和性質(zhì),銳角三角函數(shù)和勾股定理相關(guān)知識求得
,
用x的代數(shù)式表示S,用二次函數(shù)的最值原理求出S的最小值。
③由∠BAD=15
0得到四邊形ADPE是菱形,應(yīng)用相關(guān)知識求解。
求出DG、GH、HE的表達式,用勾股定理逆定理證明。
解:(1)證明:∵△ABC、△APD和△APE都是等邊三角形,
∴AD=AP,∠DAP=∠BAC=60
0,∠ADM=∠APN=60
0!唷螪AM=∠PAN。
∴△ADM≌△APN(ASA),∴AM=AN。
(2)①易證△BPM∽△CAP,∴
,
∵BN=
,AC=2,CP=2-x,∴
,即
。
解得x=
或x=
。
②四邊形AMPN的面積即為四邊形ADPE與△ABC重疊部分的面積。
∵△ADM≌△APN,∴
。
∴
。
如圖,過點P作PS⊥AB于點S,過點D作DT⊥AP于點T,則點T是AP的中點。
在Rt△BPS中,∵∠P=60
0,BP=x,
∴PS=BPsin60
0=
x,BS=BPcos60
0=
x。
∵AB=2,∴AS=AB-BC=2-
x。
∴
。
∴
。
∴
。
∴當(dāng)x=1時,S的最小值為
。
③連接PG,設(shè)DE交AP于點O。
若∠BAD=15
0,
∵∠DAP =60
0,∴∠PAG =45
0。
∵△APD和△APE都是等邊三角形,
∴AD=DP=AP=PE=EA。
∴四邊形ADPE是菱形。
∴DO垂直平分AP。
∴GP=AG!唷螦PG =∠PAG =45
0。
∴∠PGA =90
0。
設(shè)BG=t,
在Rt△BPG中,∠B=60
0,∴BP=2t,PG=
!郃G=PG=
。
∴
,解得t=
-1。∴BP=2t=2
-2。
∴當(dāng)BP=2
-2時,∠BAD=15
0。
猜想:以DG、GH、HE這三條線段為邊構(gòu)成的三角形是直角三角形。
∵四邊形ADPE是菱形,∴AO⊥DE,∠ADO=∠AEH=30
0。∵∠BAD=15
0,∴易得∠AGO=45
0,∠HAO=15
0,∠EAH=45
0。
設(shè)AO=a,則AD="AE=2" a,OD=
a!郉G=DO-GO=(
-1)a。
又∵∠BAD=15
0,∠BAC=60
0,∠ADO=30
0,∴∠DHA=∠DAH=75
0。
∵DH=AD=2a,
∴GH=DH-DG=2a-(
-1)a=(3-
)a,
HE=2DO-DH=2
a-2a=2(
-1)a。
∵
,
,
∴
。
∴以DG、GH、HE這三條線段為邊構(gòu)成的三角形是直角三角形。