【題目】如圖,大樓底右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,CE在同一水平直線上).已知AB=80m,DE=20m,求障礙物B,C兩點間的距離.(結果保留根號)

【答案】障礙物B,C兩點間的距離約為(60-20)m.

【解析】

過點DDFAB于點F,過點CCHDF于點H,則DEBFCH10m,根據(jù)直角三角形的性質得出DF的長,在RtCDE中,利用銳角三角函數(shù)的定義得出CE的長,根據(jù)BCBECE即可得出結論.

解: 過點DDFAB于點F,過點CCHDF于點H ,如圖

DE=BF=CH=20m,

在直角三角形ADF中,AF=AB-DE=80-20=60m,∠ADF=45°,

所以DF= AF=60m,CE==20m.

在直角三角形CDE中,DE=20m,∠DCE=30°.

所以BC=BE-CE=(60-20)m

答:障礙物B,C兩點間的距離約為(60-20)m.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.

(1)若該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;

(2)經調查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示8×7的正方形網格中,A20),B3,2),C42),請按要求解答下列問題:

1)將△ABO向右平移4個單位長度得到△A1B1O1,請畫出△A1B1O1并寫出點A1的坐標;

2)將△ABO繞點C42)順時針旋轉90°得到△A2B2O2,請畫出△A2B2O2并寫出點A2的坐標;

3)將△A1B1O1繞點Q旋轉90°可以和△A2B2O2完全重合,請直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtAOB中,兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將AOB繞點B逆時針旋轉90°后得到AOB.若反比例函數(shù)的圖象恰好經過斜邊AB的中點C,SABO=4,tanBAO=2,則k的值為

A.3 B.4 C.6 D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形紙片ABCD置于直角坐標系中,ABx軸,BCy軸,AB=4BC=3,點B(5,1)翻折矩形紙片使點A落在對角線DB上的H處得折痕DG

(1)求AG的長;

(2)在坐標平面內存在點Mm,-1)使AM+CM最小,求出這個最小值;

(3)求線段GH所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為中,點是劣弧的中點,點是優(yōu)弧上一點,,下列四個結論:①;②;③;④四邊形是菱形.其中正確結論的序號是(

A.①③B.②④C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經過點,,三個點.

1)求拋物線解析式;

2)若點,為該拋物線上的兩點,且.求的取值范圍;

3)在線段上是否存在一點(不與點,點重合),使點,點到直線的距離之和最大?若存在,求的度數(shù),并直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)問題發(fā)現(xiàn)

如圖1,在ABCADE中,ABAC,ADAE,∠BAC=∠DAE50°,連接BD,CE交于點F.填空:

①的值為   ;②∠BFC的度數(shù)為   

2)類比探究

如圖2,在矩形ABCDDEF中,ADAB,∠EDF90°,∠DEF60°,連接AFCE的延長線于點P.求的值及∠APC的度數(shù),并說明理由;

3)拓展延伸

在(2)的條件下,將DEF繞點D在平面內旋裝,AF,CE所在直線交于點P,若DFAB,求出當點P與點E重合時AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,轉盤A的三個扇形面積相等,分別標有數(shù)字12,3,轉盤B的四個扇形面積相等,分別標有數(shù)字1,2,3,4.轉動A、B轉盤各一次,當轉盤停止轉動時,將指針所落扇形中的兩個數(shù)字相乘(當指針落在四個扇形的交線上時,重新轉動轉盤)

1)用樹狀圖或列表法列出所有可能出現(xiàn)的結果;

2)若規(guī)定兩個數(shù)字的積為偶數(shù)時甲贏,兩個數(shù)字的積為奇數(shù)時乙贏,請問這個游戲對甲、乙兩人是否公平?

查看答案和解析>>

同步練習冊答案