【題目】如圖①,點(diǎn)為直線上一點(diǎn),過點(diǎn)作射線,使,將一直角三角板的直角頂點(diǎn)放在點(diǎn)處,一邊在射線上,另一邊在直線的上方.

1)在圖①中,__________度;

2)將圖①中的三角板繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),使得的內(nèi)部,如圖②,若,求的度數(shù);

3)將圖①中的三角板繞點(diǎn)以每秒的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,當(dāng)直線恰好平分銳角時(shí),旋轉(zhuǎn)的時(shí)間是__________.(直接寫出結(jié)果)

【答案】(1)30;(2)54°;(3)321.

【解析】

1)由題意得出∠MON=90°,得出∠COM=MON-BOC=90°-60°=30°;

2)設(shè)∠BON=α,則∠NOC=60°-α,∠MOC=MON-NOC=90°-60°+α=30°+α,∠MOA=180°-MON-BON=180°-90°-α=90°-α,由題意得出60°-α=90°-α),解得α=54°即可;

3)求出∠BON=30°或∠BON=210°,即可得出答案.

1)∵將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OB上,另一邊OM在直線AB的上方,

∴∠MON=90°

∴∠COM=MON-BOC=90°-60°=30°,

2)設(shè)∠BON=α

∵∠BOC=60°,

∴∠NOC=60°-α,

∵∠MON=90°

∴∠MOC=MON-NOC=90°-60°+α=30°+α,

MOA=180°-MON-BON=180°-90°-α=90°-α,

∵∠NOC=MOA,

60°-α=90°-α),

解得:α=54°,

即∠BON=54°;

3)∵直線ON平分∠BOC,∠BOC=60°

∴∠BON=30°或∠BON=210°,

∵三角板繞點(diǎn)O以每秒10°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,

∴直線ON平分∠BOC時(shí),旋轉(zhuǎn)的時(shí)間是321秒,

故答案為:321.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)Ay軸上,點(diǎn)Bx軸上,且OA=OB=1,經(jīng)過原點(diǎn)O的直線交線段AB于點(diǎn)C,過COC的垂線,與直線x=1相交于點(diǎn)P,現(xiàn)將直線O點(diǎn)旋轉(zhuǎn),使交點(diǎn)CAB運(yùn)動(dòng),但C點(diǎn)必須在第一象限內(nèi),并記AC的長為t,分析此圖后,對(duì)下列問題作出探究:

(1)當(dāng)△AOC△BCP全等時(shí),求出t的值。

(2)通過動(dòng)手測(cè)量線段OCCP的長來判斷它們之間的大小關(guān)系?并證明你得到的結(jié)論。

(3)①設(shè)點(diǎn)P的坐標(biāo)為(1,b),試寫出b關(guān)于t的函數(shù)關(guān)系式和變量t的取值范圍。求出當(dāng)△PBC為等腰三角形時(shí)點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校圍繞著你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))的問題,對(duì)在校學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題:

(1)該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?

(2)本次抽樣調(diào)查中,最喜歡足球活動(dòng)的有多少人?占被調(diào)查人數(shù)的百分比是多少?

(3)若該校九年級(jí)共有400名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.

(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),其表達(dá)式是y=ax2+c的形式.請(qǐng)根據(jù)所給的數(shù)據(jù)求出a,c的值.

(2)求支柱MN的長度.

(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點(diǎn)C⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)PAC=PC,∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)求證:BC=AB;

3)點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)A在反比例函數(shù)x>0)的圖象上,點(diǎn)B在反比例函數(shù)。x>0)的圖象上,且∠AOB=90°,則tanOAB的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形的一條邊長為6cm,那么這個(gè)平行四邊形的兩條對(duì)角線的長可以是(  。

A. 8cm3cm B. 8cm4cm C. 8cm5cm D. 8cm20cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃購買一批排球和足球,已知購買2個(gè)排球和1個(gè)足球共需321元,購買3個(gè)排球和2個(gè)足球共需540元.

(1)求每個(gè)排球和足球的售價(jià);

(2)若學(xué)校計(jì)劃購買這兩種球共50個(gè),總費(fèi)用不超過5500元,那么最多可購買足球多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(0,2),在x軸上任取一點(diǎn)M,連接AM,作AM的垂直平分線l1.過點(diǎn)Mx軸的垂線l2,l1l2交于點(diǎn)P.設(shè)P點(diǎn)的坐標(biāo)為(x,y).

(Ⅰ)當(dāng)M的坐標(biāo)。3,0)時(shí),點(diǎn)P的坐標(biāo)為   ;

(Ⅱ)求x,y滿足的關(guān)系式;

(Ⅲ)是否存在點(diǎn)M,使得MPA恰為等邊三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案