【題目】如圖,在下列三角形中,若AB=AC , 則能被一條直線分成兩個小等腰三角形的是( )
A.①②③
B.①②④
C.②③④
D.①③④
【答案】D
【解析】①作底角的角平分線即可;被一條直線分成兩個小等腰三角形的角的度數(shù)分別為:36°,36°,108°;36°,72°,72°.
②不能.
③作底邊上的高即可,根據(jù)直角三角形中斜邊上的中線等于斜邊的一半,即直角三角形斜邊上的中線把它分成了兩個等腰三角形.
④在BC上截取BD=AB即可;被一條直線分成兩個小等腰三角形的角的度數(shù)分別為:36°,72°,72°;36°,36°,108°.
所以答案是:D.
【考點(diǎn)精析】掌握三角形的內(nèi)角和外角是解答本題的根本,需要知道三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與軸交于點(diǎn)C,連接AC、BC.點(diǎn)P沿AC以每秒1個單位長度的速度由點(diǎn)A向點(diǎn)C運(yùn)動,同時,點(diǎn)Q沿BO以每秒2個單位長度的速度由點(diǎn)B向點(diǎn)O運(yùn)動,當(dāng)一個點(diǎn)停止運(yùn)動時,另一個點(diǎn)也隨之停止運(yùn)動,連接PQ,過點(diǎn)Q作QD⊥x軸,與拋物線交于點(diǎn)D,與BC交于點(diǎn)E.連接PD,與BC交于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動時間為秒().
(1)求直線BC的函數(shù)表達(dá)式.
(2)①直接寫出P、D兩點(diǎn)的坐標(biāo)(用含的代數(shù)式表示,結(jié)果需化簡).
②在點(diǎn)P、Q運(yùn)動的過程中,當(dāng)PQ=PD時,求的值.
(3)試探究在點(diǎn)P、Q運(yùn)動的過程中,是否存在某一時刻,使得點(diǎn)F為PD的中點(diǎn).若存在,請直接寫出此時的值與點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算x(y﹣z)﹣y(z﹣x)+z(x﹣y),結(jié)果正確的是( )
A.2xy﹣2yz
B.﹣2yz
C.xy﹣2yz
D.2xy﹣xz
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E在邊BC上,點(diǎn)F在邊AD的延長線上,且DF=BE,EF與CD交于點(diǎn)G.
(1)求證:BD∥EF;
(2)若點(diǎn)G是DC的中點(diǎn),BE=6,求邊AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E是AB上一點(diǎn),DE、CE分別是∠ADC、∠BCD的平分線,若AD=5,DE=6,則平行四邊形的面積為( )
A.96
B.48
C.60
D.30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,中、小學(xué)生每天在校體育活動時間不低于1h.為此,某區(qū)就“你每天在校體育活動時間是多少”的問題隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖如圖所示,其中A組為t<0.5h,B組為0.5h≤t<1h,C組為1h≤t<1.5h,D組為t≥1.5h.
請根據(jù)上述信息解答下列問題:
(1)本次調(diào)查數(shù)據(jù)的眾數(shù)落在 組內(nèi),中位數(shù)落在 組內(nèi);
(2)該轄區(qū)約有18000名初中學(xué)生,請你估計其中達(dá)到國家規(guī)定體育活動時間的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,BE⊥AC于E,且D、E分別是AB、AC的中點(diǎn).延長BC至點(diǎn)F,使CF=CE.
(1)求∠ABC的度數(shù);
(2)求證:BE=FE;
(3)若AB=2,求△CEF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com