如圖,矩形ABCD中,AC與BD交于O點(diǎn),AM∥BD,DM∥AC,AM、DM相交于點(diǎn)M,
求證:四邊形AODM是菱形
先根據(jù)平行四邊形的定義證得四邊形AODM為平行四邊形,再結(jié)合矩形的性質(zhì)根據(jù)菱形的判定方法分析即可.

試題分析:∵AM∥BD,DM∥AC,即AM∥OD,DM∥OA
∴四邊形AODM為平行四邊形
∵在矩形ABCD中,OA=OD
∴四邊形AODM是菱形.
點(diǎn)評(píng):平行四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在□ABCD中,點(diǎn)E,F(xiàn)分別在邊DC,AB上,DE=BF,把平行四邊形沿直線EF折疊,使得點(diǎn)B,C分別落在點(diǎn)B′,C′處,線段EC′與線段AF交于點(diǎn)G,連接DG,B′G。

求證:(1)∠1=∠2  (2)DG=B′G

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD的對(duì)角線AC是菱形AEFC的一邊,則∠FAB等于 _________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

圖①是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.

(1)圖②中陰影部分的正方形的邊長(zhǎng)是 _________;
(2)請(qǐng)用兩種不同的方法求圖2中陰影部分的面積:
方法1: _________;
方法2: _________;
(3)觀察圖②,請(qǐng)你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 _________ ;
(4)根據(jù)(3)中的等量關(guān)系解決如下問題:若m﹣n=﹣5,mn=3,則(m+n)2的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將矩形紙張ABCD四個(gè)角向內(nèi)折起恰好拼成一個(gè)既無縫隙又無重疊的四邊形EFGH,若EH=5,EF=12,則矩形ABCD的面積為
A.30B.60C.120D.240

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一塊等腰梯形開關(guān)的土地,現(xiàn)要平均分給兩個(gè)農(nóng)戶種植(既將梯形的面積兩等分),試設(shè)計(jì)兩種方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知在ABCD中,,則ABCD的周長(zhǎng)等于  
A.10cmB.20cmC.24cm D.30cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,五邊形ABCDE是由五邊形FGHMN經(jīng)過位似變換得到的,點(diǎn)是位似中心,F(xiàn)、G、H、M、N分別是OA、OB、OC、OD、OE的中點(diǎn),則五邊形ABCDE與五邊形FGHMN的面積比是(   )

A.      B.      C.      D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

18如圖①,在梯形ABCD中,ADBC,∠A=60°,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿著ABCD的方向不停移動(dòng),直到點(diǎn)P到達(dá)點(diǎn)D后才停止.已知△PAD的面積S(單位:cm2)與點(diǎn)P移動(dòng)的時(shí)間(單位:s)的函數(shù)如圖②所示,則線段CD的長(zhǎng)度為       cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案