【題目】6分)如圖,兩幢建筑物ABCD,AB⊥BD,CD⊥BD,AB=15cm,CD=20cm,ABCD之間有一景觀池,小南在A點(diǎn)測(cè)得池中噴泉處E點(diǎn)的俯角為42°,在C點(diǎn)測(cè)得E點(diǎn)的俯角為45°(點(diǎn)B、ED在同一直線上),求兩幢建筑物之間的距離BD(結(jié)果精確到0.1m).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90

【答案】36.7m

【解析】試題在RT△ABE中,由正切函數(shù)可求出BE,在RT△DEC中,由等腰直角三角形的性質(zhì)求出ED,然后根據(jù)BD=BE+ED計(jì)算即可.

試題解析:由題意得:AEB=42°,DEC=45°ABBD,CDBD,RTABE中,ABE=90°,AB=15,AEB=42°tanAEB=,BE=≈15÷0.90=,在RTDEC中,CDE=90°DEC=DCE=45°,CD=20ED=CD=20,BD=BE+ED=+20≈36m).

答:兩幢建筑物之間的距離BD約為36.7m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店以每件25元的價(jià)格購(gòu)進(jìn)一批商品,該商品可以自行定價(jià),若每件商品售價(jià)a元,則可賣出(400﹣10a)件,但物價(jià)局限定每件商品的利潤(rùn)不得超過(guò)進(jìn)價(jià)的30%,商店計(jì)劃要盈利500元,每件商品應(yīng)定價(jià)多少元?需要進(jìn)貨多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=6cm,BC=7cm,ABC=30°,點(diǎn)PA點(diǎn)出發(fā),以1cm/s的速度向B點(diǎn)移動(dòng),點(diǎn)QB點(diǎn)出發(fā),以2cm/s的速度向C點(diǎn)移動(dòng).如果P、Q兩點(diǎn)同時(shí)出發(fā),經(jīng)過(guò)幾秒后△PBQ的面積等于4cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)P是第一象限內(nèi)直線y=-x+6上一點(diǎn).O是坐標(biāo)原點(diǎn).

(1)設(shè)P(x,y),求△OPA的面積S與x的函數(shù)解析式;

(2)當(dāng)S=10時(shí),求P點(diǎn)的坐標(biāo);

(3)在直線y=-x+6上求一點(diǎn)P,使△POA是以O(shè)A為底邊的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.

(1)求直線CD的解析式;

(2)求拋物線的解析式;

(3)將直線CD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,求證:CEQ∽△CDO;

(4)在(3)的條件下,若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問(wèn):在P點(diǎn)和F點(diǎn)移動(dòng)過(guò)程中,PCF的周長(zhǎng)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)P(m,4)在反比例函數(shù)y=﹣的圖象上,正比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)P和點(diǎn)Q(6,n).

(1)求正比例函數(shù)的解析式;

(2)P、Q兩點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=(m﹣2)是一個(gè)反比例函數(shù).

(1)求m的值;

(2)它的圖象位于哪些象限;

(3)當(dāng)時(shí),求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一根長(zhǎng)為 a 的竹竿 AB 斜靠在墻上,竹竿 AB 的傾斜角為α,當(dāng)竹竿的頂端 A 下滑到點(diǎn) A'時(shí),竹竿的另一端 B 向右滑到了點(diǎn) B',此時(shí)傾斜角為β

(1)線段 AA'的長(zhǎng)為_____

2)當(dāng)竹竿 AB 滑到 A'B'位置時(shí),AB 的中點(diǎn) P 滑到了 P',位置,則點(diǎn) P 所經(jīng)過(guò)的路線長(zhǎng)為___________(兩小題均用含 a,α,β的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案