【題目】已知射線AP是△ABC的外角平分線,連結(jié)PB、PC.
(1)如圖1,若BP平分∠ABC,且∠ACB=30°,寫出∠APB的度數(shù).
(2)如圖1,若P與A不重合,求證:AB+AC<PB+PC.
(3)如圖2,若過點P作PM⊥BA,交BA延長線于M點,且∠BPC=∠BAC,求:的值.
【答案】(1)15°;(2)見解析;(3)2.
【解析】
(1)根據(jù)三角形的角平分線的定義和三角形外角的性質(zhì)即可得到結(jié)論;
(2)在射線AD上取一點H,是的AH=AC,連接PH.則△APH≌△APC,根據(jù)三角形的三邊關(guān)系即可得到結(jié)論.
(3)過P作PN⊥AC于N,根據(jù)角平分線的性質(zhì)得到PM=PN,根據(jù)全等三角形的性質(zhì)得到AM=AN,BM=CN,于是得到結(jié)論.
(1)∵∠DAC=∠ABC+∠ACB,∠1=∠2+∠APB,
∵AE平分∠DAC,PB平分∠ABC,
∴∠1=DAC,∠2=∠ABC,
∴∠APB=∠1﹣∠2=DAC﹣ABC=∠ACB=15°,
故答案為:15°;
(2)在射線AD上取一點H,使得AH=AC,連接PH.
∵射線AP是△ABC的外角平分線,∴∠HAP=∠PAC,
則
故△APH≌△APC,
∴PC=PH,
在△BPH中,PB+PH>BH,
∴PB+PC>AB+AC.
(3)過P作PN⊥AC于N,
∵AP平分∠MAN,PM⊥BA,
∴PM=PN,
在Rt△APM與Rt△APN中, ,
∴Rt△APM≌Rt△APN(HL),
∴AM=AN,
∵∠BPC=∠BAC,
∴A,B,C,P四點共圓,
∴∠ABP=∠PCN,
在△PMB與△PNC中, ,
∴BM=CN,
∵AM=AN,
∴AC﹣AB=2AM,
∴=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, △ABC是直角三角形,∠A=90°,D是斜邊BC的中點,E,F分別是AB,AC邊上的動點,且DE⊥DF.
(1)如圖(1),連接AD,若AB=AC=17,CF=5,求線段EF的長.
(2)如圖(2),若AB≠AC,寫出線段EF與線段BE,CF之間的等量關(guān)系,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由27個相同的小立方塊搭成的幾何體,它的三個視圖是3×3的正方形,若拿掉若干個小立方塊(幾何體不倒掉),其三個視圖仍都為3×3的正方形,則最多能拿掉小立方塊的個數(shù)為( 。
A. 10 B. 12 C. 15 D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準互余三角形”.
(1)若△ABC是“準互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線分別交AB,AC于點D,E.
(1)若∠A=40°,求∠EBC的度數(shù);
(2)若AD=5,△EBC的周長為16,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+4與x軸、y軸分別交于點A、B,以OB為底邊在y軸右側(cè)作等腰△OBC,將△OBC沿y軸折疊,使點C恰好落在直線AB上,則點C的坐標為( )
A.(1,2)B.(4,2)C.(3,2)D.(﹣1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.則下列結(jié)論:①abc>0;②9a+3b+c>0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<2<x2,且x1+x2>4,則y1>y2.其中正確的結(jié)論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+3的圖象與x軸分別交于點A,B,與y軸交于點C,已知BO=CO.
(1)求拋物線的解析式;
(2)點E在線段OB上,過點E作x軸的垂線交拋物線于點P,連結(jié)PA,若PA⊥CE,垂足為點F,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com