【題目】定義:有三個內角相等的四邊形叫三等角四邊形.
(1)如圖,折疊平行四邊形紙片,使頂點,別落在邊,的點,處,折痕分別為,.求證:四邊形是三等角四邊形;
(2)當時,如圖所示,在三等角四邊形中,,若,設,,求y與x的函數(shù)關系式,并求出的最大值是多少?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過點(﹣2,0),對稱軸為直x=1線,下列結論中:①abc>0;②若A(x1,m),B(x2,m)是拋物線上的兩點,當x=x1+x2時,y=c;③若方程a(x+2)(4﹣x)=﹣2的兩根為x1,x2,且x1<x2,則﹣2<x1<x2<4;④(a+c)2>b2;一定正確的是______(填序號即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為做好新型肺炎疫情防控,某社區(qū)開展新型肺炎疫情排查與宣傳教育志愿服務活動,組織社區(qū)20名志愿者隨機平均分配在4個院落門甲、乙、丙、丁處值守,并對進出人員進行測溫度、勸導佩戴口罩、正確投放生活垃圾等服務.
(1)志愿者小明被分配到甲處服務是( )事件;
A.不可能事件 B.可能事件 C.必然事件 D.無法確定
(2)請用列表或樹狀圖的方法,求出志愿者小明和小紅被隨機分配到同一處服務的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點的坐標為,且,拋物線圖象經過三點.
(1)求兩點的坐標;
(2)求拋物線的解析式;
(3)若點是直線下方的拋物線上的一個動點,作于點,當的值最大時,求此時點的坐標及的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線交軸于點、(左右),交軸于點,直線交軸于點,連接,.
(1)求、的值;
(2)點是第三象限拋物線上的任意一點,設點的橫坐標為,連接、,若的面積為,求關于的函數(shù)解析式(不要求寫出自變量的取值范圍);
(3)在(2)的條件下,連接、,當平分時,以線段為邊,在上方作等邊,過點作于點,過點作交于點,連接,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有六張正面分別標有數(shù)字﹣2,﹣1,0,1,2,3的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為a,將該卡片上的數(shù)字加1記為b,則函數(shù)y=ax2+bx+2的圖象過點(1,3)的概率為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD中,點E、F分別在AD、AB上(點E不與點D重合),DE=AF,DF、CE交于點G,則AG的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題10分)如圖,在平面直角坐標系xOy中,直線與y軸交于點C,與x軸交于點B,拋物線經過B、C兩點,與x軸的正半軸交于另一點A,且OA :OC="2" :7.
(1)求拋物線的解析式;
(2)點D為線段CB上,點P在對稱軸的右側拋物線上,PD=PB,當tan∠PDB=2,求P點的坐標;
(3)在(2)的條件下,點Q(7,m)在第四象限內,點R在對稱軸的右側拋物線上,若以點P、D、Q、R為頂點的四邊形為平行四邊形,求點Q、R的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距 120 千米,小張騎自行車從甲地出發(fā)勻速駛往乙地,出發(fā) a小時開始休息,1 小時后仍按原速繼續(xù)行駛.小李比小張晚出發(fā)一段時間,騎摩托車從乙地勻速駛往甲地,圖中折線 CD-DE-EF,線段 AB 分別表示小張、小李與乙地的距離 y(千米)與小張出發(fā)時間 x(小時)之間的函數(shù)關系圖象.
(1)小李到達甲地后,再經過 小時小張到達乙地;小張騎自行車的速度是 千米/時;
(2)當 a=4 時,求小張與乙地的距離 y乙 與小張出發(fā)的時間 x(小時)之間的函數(shù)關系式;
(3)若小張恰好在休息期間與小李相遇,請直接寫出 a 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com