【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(k≠0)的圖象與一次函數(shù)y=ax+b(a≠0)的圖象交于A、B兩點,過點A作AHy軸,垂足為H,若OH=4,sin∠AOH=,點B的坐標(biāo)(6,n).

(1)求反比例函數(shù)和一次函數(shù)的解析式.

(2)AOB的面積.

【答案】1y=,y=﹣x+629

【解析】

1)通過解直角三角形可得出點A的坐標(biāo)利用反比例函數(shù)圖象上點的坐標(biāo)特征可求出反比例函數(shù)解析式,再根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征可得出點B的坐標(biāo),根據(jù)點AB的坐標(biāo)利用待定系數(shù)法,即可求出一次函數(shù)的解析式

2)利用一次函數(shù)圖象上點的坐標(biāo)特征求出點C的坐標(biāo),再根據(jù)△AOB的面積=AOC的面積﹣△COB的面積即可求解

1∵在RtAOH,AHO=90°,OH=4,sinAOH=AH=3,OA=5∴點A的坐標(biāo)為(3,4).

∵點A在反比例函數(shù)y=k0)的圖象上,k=3×4=12,∴反比例函數(shù)的解析式為y=

∵點B的坐標(biāo)為(6,n),B在反比例函數(shù)y=的圖象上,n==2∴點B的坐標(biāo)為(6,2).

將點A3,4)、B6,2)代入y=ax+b,解得∴一次函數(shù)的解析式為y=﹣x+6;

2)當(dāng)y=0,﹣x+6=0解得x=9,∴點C的坐標(biāo)為(9,0),SAOB=SAOCSCOB

=×9×4×9×2

=189

=9

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點H,連接DH,下列結(jié)論正確的是( 。

①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④SHDG:SHBG=tan∠DAG ⑤線段DH的最小值是2﹣2

A. ①②⑤ B. ①③④⑤ C. ①②④⑤ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點,直線y=2與y軸交于點C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明為了測量大樓AB的高度,他從點C出發(fā),沿著斜坡面CD走260米到點D處,測得大樓頂部點A的仰角為37°,大樓底部點B的俯角為45°,已知斜坡CD的坡度為i=1:2.4.則大樓AB的高度約為(  )米.

(參考書據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A. 170 B. 175 C. 180 D. 190

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:

(1)畫出ABC關(guān)于y軸的對稱圖形△A1B1C1;

(2)請計算ABC的面積;

(3)直接寫出ABC關(guān)于x軸對稱的三角形△A2B2C2的各點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011?常州)如圖,DE⊙O的直徑,弦AB⊥CD,垂足為C,若AB=6,CE=1,則OC=  CD=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片中,,,將沿折疊,使點落在點處,于點,則的長等于(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】改革開放40年以來,城鄉(xiāng)居民生活水平持續(xù)快速提升,居民教育、文化和娛樂消費支出持續(xù)增長,已經(jīng)成為居民各項消費支出中僅次于居住、食品煙酒、交通通信后的第四大消費支出,如圖為北京市統(tǒng)計局發(fā)布的2017年和2018年我市居民人均教育、文化和娛樂消費支出的折線圖.

說明:在統(tǒng)計學(xué)中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2017年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2018年第一季度相比較.

根據(jù)上述信息,下列結(jié)論中錯誤的是( 。

A. 2017年第二季度環(huán)比有所提高

B. 2017年第三季度環(huán)比有所提高

C. 2018年第一季度同比有所提高

D. 2018年第四季度同比有所提高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點P是等邊△ABC內(nèi)一點,PA=3,PB=4,PC=5,求∠APB的度數(shù).

(1)在圖中畫出:將△BPC繞點B逆時針旋轉(zhuǎn)60°后得到△BEA;

(2)連接EP,完成你的解答.

查看答案和解析>>

同步練習(xí)冊答案