某幾何體的主視圖、左視圖和俯視圖分別如圖,則該幾何體的體積為( )
| A. | 3π | B. | 2π | C. | π | D. | 12 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關(guān)系是( 。
| A. | 相交 | B. | 內(nèi)切 | C. | 外離 | D. | 內(nèi)含 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線y=x2﹣(k+2)x+和直線y=(k+1)x+(k+1)2.
(1)求證:無(wú)論k取何實(shí)數(shù)值,拋物線總與x軸有兩個(gè)不同的交點(diǎn);
(2)拋物線于x軸交于點(diǎn)A、B,直線與x軸交于點(diǎn)C,設(shè)A、B、C三點(diǎn)的橫坐標(biāo)分別是x1、x2、x3,求x1•x2•x3的最大值;
(3)如果拋物線與x軸的交點(diǎn)A、B在原點(diǎn)的右邊,直線與x軸的交點(diǎn)C在原點(diǎn)的左邊,又拋物線、直線分別交y軸于點(diǎn)D、E,直線AD交直線CE于點(diǎn)G(如圖),且CA•GE=CG•AB,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直角梯形ABCO的兩邊OA,OC在坐標(biāo)軸的正半軸上,BC∥x軸,OA=OC=4,以直線x=1為對(duì)稱軸的拋物線過(guò)A,B,C三點(diǎn).
(1)求該拋物線的函數(shù)解析式.
(2)已知直線l的解析式為y=x+m,它與x軸交于點(diǎn)G,在梯形ABCO的一邊上取點(diǎn)P.
①當(dāng)m=0時(shí),如圖1,點(diǎn)P是拋物線對(duì)稱軸與BC的交點(diǎn),過(guò)點(diǎn)P作PH⊥直線l于點(diǎn)H,連結(jié)OP,試求△OPH的面積.
②當(dāng)m=-3時(shí),過(guò)點(diǎn)P分別作x軸、直線l的垂線,垂足為點(diǎn)E,F.是否存在這樣的點(diǎn)P,使以P,E,F為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若α,β是方程x2﹣2x﹣3=0的兩個(gè)實(shí)數(shù)根,則α2+β2的值為( 。
| A. | 10 | B. | 9 | C. | 7 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,且AC=6cm,BD=8cm,動(dòng)點(diǎn)P,Q分別從點(diǎn)B,D同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,點(diǎn)P沿B→C→D運(yùn)動(dòng),到點(diǎn)D停止,點(diǎn)Q沿D→O→B運(yùn)動(dòng),到點(diǎn)O停止1s后繼續(xù)運(yùn)動(dòng),到B停止,連接AP,AQ,PQ.設(shè)△APQ的面積為y(cm2)(這里規(guī)定:線段是面積0的幾何圖形),點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).
(1)填空:AB= 5 cm,AB與CD之間的距離為 cm;
(2)當(dāng)4≤x≤10時(shí),求y與x之間的函數(shù)解析式;
(3)直接寫(xiě)出在整個(gè)運(yùn)動(dòng)過(guò)程中,使PQ與菱形ABCD一邊平行的所有x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com