【題目】如圖,在三角形中,.將三角形繞著點旋轉(zhuǎn),使得點落在直線上的點,點落在點

1)畫出旋轉(zhuǎn)后的三角形

2)求線段在旋轉(zhuǎn)的過程中所掃過的面積(保留).

3)如果在三角形中,(其中).其他條件不變,請你用含有的代數(shù)式,直接寫出線段旋轉(zhuǎn)的過程中所掃過的面積(保留).

【答案】1)見解析;(2;(3或者

【解析】

1)分種順時針和逆時針作圖即可;

2)根據(jù)逆時針轉(zhuǎn)60度,順時針轉(zhuǎn)120度,分別計算面積;

3)利用(1)的旋轉(zhuǎn)圖形與(2)的面積計算進行求解.

1)分兩種情況:逆時針旋轉(zhuǎn)60°,如下圖所示,

順時針旋轉(zhuǎn)120°,所下圖所示,

2)逆時針轉(zhuǎn)60度:

順時針轉(zhuǎn)120度:

3)由(1)可知,當時,需要逆時針旋轉(zhuǎn)或順時針旋轉(zhuǎn),

同(2)的面積計算可得:

逆時針轉(zhuǎn)度:

順時針轉(zhuǎn)度:

故答案為:或者

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,PA、PB為⊙O的切線,M、NPA、AB的中點,連接MN交⊙OC,連接PC交⊙OD,連接NDPBQ,求證:MNQP為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AGF=∠ABC,∠ 1+∠ 2=180°

1)試判斷BFDE的位置關系,并說明理由;

2)若BFAC,CDE=30°,求AFG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格當中,三角形的三個頂點都在格點上.直線與直線相交于點

1)畫出將三角形向右平移5個單位長度后的三角形(點的對應點分別是點).

2)畫出三角形關于直線對稱的三角形(點的對應點分別是點).

3)畫出將三角形繞著點旋轉(zhuǎn)后的三角形(點的對應點分別是點).

4)在三角形,中,三角形 與三角形 成軸對稱,三角形 與三角形 成中心對稱

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ACBC于C,BC=a,CA=b,AB=c,下列圖形中O與ABC的某兩條邊或三邊所在的直線相切,則O的半徑為的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,證明定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.

已知:點D、E分別是ABC的邊AB、AC的中點.

求證:DEBC,DEBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A是以BC為直徑的⊙O上一點,ADBC于點D,過點B作⊙O的切線,與CA的延長線相交于點EGAD的中點,連結(jié)CG并延長與BE相交于點F,延長AFCB的延長線相交于點P

(1)求證:BF=EF

(2)求證:PA是⊙O的切線;

(3)若FG=BF,且⊙O的半徑長為3,求BD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點DDHAC于點H,連接DE交線段OA于點F.

(1)求證:DH是圓O的切線;

(2)若AEH的中點,求的值;

(3)若EA=EF=1,求圓O的半徑.

查看答案和解析>>

同步練習冊答案