【題目】如圖,已知拋物線經過A(-1,0)、B(4,5)兩點,過點B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點M是拋物線上的一個點,直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點的四邊形是平行四邊形,求出點M的橫坐標.
【答案】(1)數(shù)量關系(2) ;(3),,,.
【解析】試題分析:(1)將A(-1,0)、B(4,5)分別代入y=x2+bx+c求出b和c的值即可;
(2)過點O作OH⊥AB,垂足為H,根據勾股定理可求出AB的長,進而得到:在Rt△BOH中,tan∠ABO=.
(3)設點M的坐標為(x,x2-2x-3),點N的坐標為(x,x+1),在分兩種情況:當點M在點N的上方時和當點M在點N的下方時,則四邊形NMCB是平行四邊形討論求出符合題意的點M的橫坐標即可.
試題解析::(1)將A(-1,0)、B(4,5)分別代入y=x2+bx+c,得
,
解得b=-2,c=-3.
∴拋物線的解析式:y=x2-2x-3.
(2)在Rt△BOC中,OC=4,BC=5.
在Rt△ACB中,AC=AO+OC=1+4=5,
∴AC=BC.
∴∠BAC=45°,AB=.
如圖1,過點O作OH⊥AB,垂足為H.
在Rt△AOH中,OA=1,
∴AH=OH=OA×sin45°=1×=,
∴BH=AB-AH=,
在Rt△BOH中,tan∠ABO=.
(3)直線AB的解析式為:y=x+1.
設點M的坐標為(x,x2-2x-3),
點N的坐標為(x,x+1),
如圖2,當點M在點N的上方時,
則四邊形MNCB是平行四邊形,MN=BC=5.
由MN=(x2-2x-3)-(x+1)=x2-2x-3-x-1=x2-3x-4,
解方程x2-3x-4=5,得x=或x=.
②如圖3,當點M在點N的下方時,則四邊形NMCB是平行四邊形,NM=BC=5.
由MN=(x+1)-(x2-2x-3)=x+1-x2+2x+3=-x2+3x+4,
解方程-x2+3x+4=5,得x=或x=.
所以符合題意的點M有4個,其橫坐標分別為:、、、.
科目:初中數(shù)學 來源: 題型:
【題目】在學習了正方形后,數(shù)學小組的同學對正方形進行了探究,發(fā)現(xiàn):
(1)如圖1,在正方形ABCD中,點E為BC邊上任意一點(點E不與B、C重合),點F在線段AE上,過點F的直線MN⊥AE,分別交AB、CD于點M、N . 此時,有結論AE=MN,請進行證明;
(2)如圖2:當點F為AE中點時,其他條件不變,連接正方形的對角線BD, MN 與BD交于點G,連接BF,此時有結論:BF= FG,請利用圖2做出證明.
(3)如圖3:當點E為直線BC上的動點時,如果(2)中的其他條件不變,直線MN分別交直線AB、CD于點M、N,請你直接寫出線段AE與MN之間的數(shù)量關系、線段BF與FG之間的數(shù)量關系.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F(xiàn)是BC上任意一點,連接AF交對角線BD于點E,連接EC.
(1)求證:AE=EC;
(2)當∠ABC=60°,∠CEF=60°時,點F在線段BC上的什么位置?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,現(xiàn)有下列結論:①b2﹣4ac>0;②2a+b=0;③a﹣b+c>0;④b+c>0;⑤4a+2b+c<0,則其中結論正確的是( )
A. ①③⑤ B. ①②④ C. ②③⑤ D. ①②④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知將一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)
(1)如圖1擺放,點O、A、C在一直線上,則∠BOD的度數(shù)是多少?
(2)如圖2,將直角三角板OCD繞點O逆時針方向轉動,若要OB恰好平分∠COD,則∠AOC的度數(shù)是多少?
(3)如圖3,當三角板OCD擺放在∠AOB內部時,作射線OM平分∠AOC,射線ON平分∠BOD,如果三角板OCD在∠AOB內繞點O任意轉動,∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在菱形ABCD中,點E,F分別為AB,AD的中點,連結CE,CF.
(1)求證:CE=CF;
(2)如圖2,若H為AB上一點,連結CH,使∠CHB=2∠ECB,求證:CH=AH+AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD交于點O,AB=AC,點E是BD上一點,且AE=AD,∠EAD=∠BAC.
⑴ 求證:∠ABD=∠ACD;
⑵ 若∠ACB=65°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上兩點對應的數(shù)分別是,,為數(shù)軸上三個動點,點從點出發(fā)速度為每秒個單位,點從點出發(fā)速度為點的倍,點從原點出發(fā)速度為每秒個單位.
若點向右運動,同時點向左運動,求多長時間點與點相距個單位?
若點同時都向右運動,求多長時間點到點的距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】結合數(shù)軸與絕對值的知識回答下列問題:
(1)數(shù)軸上表示4和1的兩點之間的距離是 ;表示﹣3和2兩點之間的距離是 ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離等于|m﹣n|.如果表示數(shù)a和﹣2的兩點之間的距離是3,那么a= ;
(2)若數(shù)軸上表示數(shù)a的點位于﹣4與2之間,求|a+4|+|a﹣2|的值;
(3)當a取何值時,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com