【題目】閱讀材料:像、兩個(gè)含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱這兩個(gè)代數(shù)式互為有理化因式例如,、等都是互為有理化因式在進(jìn)行二次根式計(jì)算時(shí),利用有理化因式,可以化去分母中的根號(hào).

例如;;

解答下列問題:

(1)________互為有理化因式,將分母有理化得________;

(2)計(jì)算:;

(3)己知有理數(shù)a、b滿足,求a、b的值.

【答案】;;

【解析】(1)根據(jù)題意可以得到所求式子的分母有理化因式,并將題目中的二次根式化簡;

(2)根據(jù)分母有理化的方法可以化簡題目中的式子;

(3)根據(jù)題意,對所求式子變形即可求得a、b的值.

(1)互為有理化因式,

故答案為;

原式;

,

,

,

解這個(gè)方程組,得:,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線,AE∥BC,CE⊥AE,垂足為E.
(1)求證:△ABD≌△CAE;
(2)連接DE,線段DE與AB之間有怎樣的位置和數(shù)量關(guān)系?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△AB′C′是由Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到的,連接CC′交斜邊于點(diǎn)E,CC′的延長線交BB′于點(diǎn)F.
(1)證明:△ACE∽△FBE;
(2)設(shè)∠ABC=α,∠CAC′=β,試探索α、β滿足什么關(guān)系時(shí),△ACE與△FBE是全等三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知四邊形ABCD是正方形,對角線ACBD相交于點(diǎn)E,以點(diǎn)E為頂點(diǎn)作正方形EFGH

1)如圖1,點(diǎn)A、D分別在EHEF上,連接BH、AF,直接寫出BHAF的數(shù)量關(guān)系;

2)將正方形EFGH繞點(diǎn)E順時(shí)針方向旋轉(zhuǎn).

如圖2,判斷BHAF的數(shù)量關(guān)系,并說明理由;

如果四邊形ABDH是平行四邊形,請?jiān)趥溆脠D中補(bǔ)全圖形;如果四方形ABCD的邊長為,求正方形EFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們都知道:|5﹣(﹣2)|表示5與﹣2之差的絕對值,實(shí)際上也可理解為5與﹣2兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離.請你借助數(shù)軸進(jìn)行以下探索:

(1)數(shù)軸上表示5與﹣2兩點(diǎn)之間的距離是   

(2)數(shù)軸上表示x2的兩點(diǎn)之間的距離可以表示為   

(3)同理|x+3|+|x﹣1|表示數(shù)軸上有理數(shù)x所對應(yīng)的點(diǎn)到﹣31所對應(yīng)的點(diǎn)的距離之和,請你找出所有符合條件的整數(shù)x,使得|x+3|+|x﹣1|=4,這樣的整數(shù)是   

(4)由以上探索猜想|x+10|+|x+2|+|x﹣8|是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.

(5)由以上探索猜想|x+10|+|x+2|+|x﹣8|+|x﹣10|是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形中,對角線、相交于點(diǎn),下列條件不能判定這個(gè)四邊形是平行四邊形的是( 。

A. ABDC,ADBC B. AO=CO,BO=DO

C. ABDC,AD=BC D. AB=DC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲列車速度是60km/h,乙列車速度是90km/h.

(1)兩列車都從某地出發(fā),目的地距離出發(fā)點(diǎn)1000km,甲列車先走2小時(shí),問乙列車什么時(shí)候能追上甲列車?追上時(shí)離目的地還有多遠(yuǎn)?

(2)甲列車從A地開往B地,乙列車同時(shí)從B地開往A地,已知A,B兩地相距200km,兩車相遇的地方離A地多遠(yuǎn)?(用方程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國務(wù)院辦公廳2015年3月16日發(fā)布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進(jìn)一步普及足球知識(shí),傳播足球文化,我市舉行了“足球進(jìn)校園”知識(shí)競賽活動(dòng),為了解足球知識(shí)的普及情況,隨機(jī)抽取了部分獲獎(jiǎng)情況進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

獲獎(jiǎng)等次

頻數(shù)

頻率

一等獎(jiǎng)

10

0.05

二等獎(jiǎng)

20

0.10

三等獎(jiǎng)

30

b

優(yōu)勝獎(jiǎng)

a

0.30

鼓勵(lì)獎(jiǎng)

80

0.40


請根據(jù)所給信息,解答下列問題:
(1)a= , b= , 且補(bǔ)全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計(jì)圖來描述獲獎(jiǎng)分布情況,問獲得優(yōu)勝獎(jiǎng)對應(yīng)的扇形圓心角的度數(shù)是多少?
(3)在這次競賽中,甲、乙、丙、丁四位同學(xué)都獲得一等獎(jiǎng),若從這四位同學(xué)中隨機(jī)選取兩位同學(xué)代表我市參加上一級(jí)競賽,請用樹狀圖或列表的方法,計(jì)算恰好選中甲、乙二人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)E在AC上(且不與點(diǎn)A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.

(1)請直接寫出線段AF,AE的數(shù)量關(guān)系;
(2)將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖②,連接AE,請判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在圖②的基礎(chǔ)上,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),請判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過程;若變化,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案