【題目】某村莊計劃建造A,B兩種型號的沼氣池共20個,以解決該村所有農(nóng)戶的燃料問題.兩種型號沼氣池的占地面積和可供使用農(nóng)戶數(shù)見下表:
型號 | 占地面積 (單位:m2/個) | 可供使用農(nóng)戶數(shù) (單位:戶/個) |
A | 15 | 18 |
B | 20 | 30 |
已知可供建造沼氣池的占地面積不超過365m2,該村農(nóng)戶共有492戶.
(1)如何合理分配建造A,B型號“沼氣池”的個數(shù)才能滿足條件?滿足條件的方案有幾種?通過計算分別寫出各種方案.
(2)請寫出建造A、B兩種型號的“沼氣池”的總費用y和建造A型“沼氣池”個數(shù)x之間的函數(shù)關系式;
(3)若A型號“沼氣池”每個造價2萬元,B型號“沼氣池”每個造價3萬元,試說明在(1)中的各種建造方案中,哪種建造方案最省錢,最少的費用需要多少萬元?
【答案】(1)方案一:A型7個,B型13個;方案二:A型8個,B型12個;方案三:A型9個,B型11個;(2)y=-x+60;(3)方案三最省錢,需要的費用為51萬元.
【解析】分析:(1)設該村計劃修建A種沼氣池x個,則修建B種沼氣池(20-x)個,根據(jù)沼氣池的占地面積和該村農(nóng)戶的數(shù)量建立不等式組求出其解即可;(2)根據(jù)表格信息即可得出y與x之間的函數(shù)關系式.(3)根據(jù)(2)的關系式及一次函數(shù)的增減性,結合(1)中x的取值范圍即可求解.
詳解:
(1)設建造A型沼氣池x個,則建造B型沼氣池(20-x)個,
依題意得:
,
解得:7≤x≤9.
∵x為整數(shù)∴x=7,8,9,
∴滿足條件的方案有三種:
方案一:A型7個,B型13個;
方案二:A型8個,B型12個;
方案三:A型9個,B型11個;
(2)建造A、B兩種型號的“沼氣池”的總費用y和建造A型“沼氣池”個數(shù)x之間的函數(shù)關系式為:y=2x+3(20-x)=-x+60;
(3)∵y=-x+60,為減函數(shù),
∴當x取最大時,費用最少,
故可得方案三最省錢,需要51萬元.
答:方案三最省錢,需要的費用為51萬元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某年6月份的日歷.
(1)細心觀察:小張一家外出旅游5天,這5天的日期之和是20.小張旅游最后一天是 _____________號.
(2)如果用一個長方形方框任意框出33個數(shù),從左下角到右上角的“對角線”上的3個數(shù)字的和54,那么這9個數(shù)的和為______________,在這9個日期中,最后一天是_____________號.
(3)在這個月的日歷中,用方框能否圈出“總和為135”的9個數(shù)?如果能,請求出這9個日期分別是幾號;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關系.
猜想結論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證)
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索規(guī)律,觀察下面算式,解答問題.
1+3 =4 =22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+7+9=25=52;
(1)請猜想1+3+5+7+9+…+19=
(2)請猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=
(3)試計算:101 +103+…+197 +199.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題:
(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)
(3)[45-(-+)×36]÷5 (4)99×(-36)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)用根長度相同的火柴棒,按如圖①擺放時可擺成個正方形,按如圖②擺放時可擺成個正方形
(1)如圖①,當時,___________,如圖②,當時,________________;
(2)與之間有何數(shù)量關系,請你寫出來并說明理由;
(3)現(xiàn)有61根火柴棒,現(xiàn)用若干根火柴棒擺成圖①的形狀后,剩下的火柴棒剛好可以擺成圖②的形狀。請你直接寫出一種擺放方法,并通過計算驗證你的結論
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,O是BC邊上一點,以O為圓心的半圓分別與AB、AC邊相切于D、E兩點,連接OD.已知BD=2,AD=3.求:
(1)tanC;
(2)圖中兩部分陰影面積的和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,下面說法正確的個數(shù)是( 。﹤.
①若O是△ABC的外心,∠A=50°,則∠BOC=100°;
②若O是△ABC的內心,∠A=50°,則∠BOC=115°;
③若BC=6,AB+AC=10,則△ABC的面積的最大值是12;
④△ABC的面積是12,周長是16,則其內切圓的半徑是1.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形OABC的面積為9,點O為坐標原點,點A、C分別在x軸、y軸上,點B 在函數(shù)(k>0,x>0)的圖象上,點P (m,n)是函數(shù)(k>0,x>0)的圖象上任意一點,過P分別作x軸、y軸的垂線,垂足為E、F,設矩形OEPF在正方形OABC以外的部分的面積為S.
①求B點坐標和k的值;
②當時,求點P的坐標;
③寫出S關于m的函數(shù)關系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com