如圖,直線y=-x-1與拋物線y=ax2+bx-4都經(jīng)過點(diǎn)A(-1,0)、C(3,-4).
(1)求拋物線的解析式;
(2)動(dòng)點(diǎn)P在線段AC上,過點(diǎn)P作x軸的垂線與拋物線相交于點(diǎn)E,求線段PE長度的最大值;
(3)當(dāng)線段PE的長度取得最大值時(shí),在拋物線上是否存在點(diǎn)Q,使△PCQ是以PC為直角邊的直角三角形?若存在,請(qǐng)求出Q點(diǎn)的坐標(biāo);若不存在.請(qǐng)說明理由.

【答案】分析:(1)已知拋物線圖象上的兩點(diǎn)坐標(biāo),可將其代入拋物線的解析式中,通過聯(lián)立方程組即可求得待定系數(shù)的值.
(2)首先要弄清的是PE的長,實(shí)際是直線AC與拋物線函數(shù)值的差,可設(shè)出P點(diǎn)橫坐標(biāo),根據(jù)直線AC和拋物線的解析式表示出P、E的縱坐標(biāo),進(jìn)而得到關(guān)于PE與P點(diǎn)橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出PE的最大值.
(3)此題要分作兩種情況考慮:
①Rt△PCQ以P為直角頂點(diǎn),根據(jù)直線AC的解析式,可求得直線PQ的解析式y(tǒng)=kx+b中k=1,已知了點(diǎn)P的坐標(biāo),即可求得直線PQ的解析式,聯(lián)立拋物線的解析式,可求得Q點(diǎn)的坐標(biāo);
②當(dāng)Rt△PCQ以C為直角頂點(diǎn)時(shí),方法同上.
解答:解:(1)∵A(-1,0)、C(3,-4)在拋物線y=ax2+bx-4上,
,
∴a=1,b=-3,
∴y=x2-3x-4.

(2)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(m,-m-1),則E點(diǎn)的坐標(biāo)為(m,m2-3m-4),
∴PE=(-m-1)-(m2-3m-4),
=-m2+2m+3,
=-(m-1)2+4,
∵PE>0,
∴當(dāng)m=1時(shí),線段PE最大且為4.

(3)假設(shè)存在符合條件的Q點(diǎn);
當(dāng)線段PE最大時(shí)動(dòng)點(diǎn)P的坐標(biāo)為(1,-2),
①當(dāng)PQ⊥PC時(shí),
∵直線PC的解析式為:y=-x-1
∴直線PQ的解析式可設(shè)為:y=x+b,
則有:-2=1+b,b=-3;
∴直線PQ的方程為y=x-3,
聯(lián)立
得點(diǎn)Q的坐標(biāo)為:(2+-1),(2-,--1).
②當(dāng)CQ⊥PC時(shí),同理可求得直線CQ的解析式為y=x-7;
聯(lián)立拋物線的解析式得:,
解得(舍去),
∴Q(1,-6);
綜上所述,符合條件的Q點(diǎn)共有3個(gè),坐標(biāo)為:Q1(2+,-1),Q2(2-,--1),Q3(1,-6).
點(diǎn)評(píng):此題主要考查了二次函數(shù)解析式的確定、二次函數(shù)最值的應(yīng)用以及直角三角形的判定、函數(shù)圖象交點(diǎn)坐標(biāo)的求法等知識(shí);需要注意的是(3)題中,點(diǎn)P、C都有可能是直角頂點(diǎn),要分類討論,以免漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線:y1=kx+b與拋物線:y2=x2+bx+c交于點(diǎn)A(-2,4),B(8,2).精英家教網(wǎng)
(1)求出直線解析式;
(2)求出使y1>y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,直線a、b都與直線c相交,給出下列條件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判斷a∥b的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,直線AB、CD相交于點(diǎn)E,EF⊥AB于E,若∠CEF=59°,則∠AED的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=6-x交x軸、y軸于A、B兩點(diǎn),P是反比例函數(shù)y=
4
x
(x>0)
圖象上位于直線下方的一點(diǎn),過點(diǎn)P作x軸的垂線,垂足為點(diǎn)M,交AB于點(diǎn)E,過點(diǎn)P作y軸的垂線,垂足為點(diǎn)N,交AB于點(diǎn)F.則AF•BE=( 。
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,直線a∥c,b∥c,直線d與直線a、b、c相交,已知∠1=60°,求∠2、∠3的度數(shù)(可在圖中用數(shù)字表示角).

查看答案和解析>>

同步練習(xí)冊(cè)答案